CC BY-NC-ND 4.0 · Synlett 2023; 34(14): 1678-1684
DOI: 10.1055/a-2108-8581
synpacts
Published as part of the Special Section 13th EuCheMS Organic Division Young Investigator Workshop

Catalytic Dehydrative Transformations Mediated by Moisture-Tolerant Zirconocene Triflate

Cristiana Margarita
,
,
Financial support from Lantmännens forskningsstiftelse, Formas (grant no. 2021-00678), the Swedish Foundation for Strategic Research (grant no. FFL21-0005), Stiftelsen Olle Engkvist Byggmästare, Frans Georg och Gull Liljenroths stiftelse, Magnus Bergvalls stiftelse, Stiftelsen Lars Hiertas Minne, and KTH Royal Institute of Technology are gratefully acknowledged.


Abstract

Zirconocene triflate is a powerful moisture-tolerant catalyst for activation of C–O bonds in carboxylic acids and alcohols in the absence of water scavenging techniques. Herein, an overview of the use of this robust metal complex for direct amidation, esterification, and etherification is presented, along with a discussion on mechanistic aspects of the transformations and the catalyst class.



Publication History

Received: 08 March 2023

Accepted after revision: 07 June 2023

Accepted Manuscript online:
12 June 2023

Article published online:
11 July 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yamamoto H. In Lewis Acids in Organic Synthesis . John Wiley & Sons, Ltd; Weinheim: 2000: 1
  • 2 Wang T.-H, Navarrete-López AM, Li S, Dixon DA, Gole JL. J. Phys. Chem. A 2010; 114: 7561
  • 3 Kobayashi S. Synlett 1994; 689
  • 4 Kobayashi S. Chem. Lett. 1991; 20: 2187
  • 5 Kobayashi S, Hachiya I, Ishitani H, Araki M. Synlett 1993; 472
  • 6 Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227
  • 7 Keller E, Feringa BL. Tetrahedron Lett. 1996; 37: 1879
  • 8 Nagayama S, Kobayashi S. Angew. Chem. Int. Ed. 2000; 39: 567
  • 9 Kobayashi S. Chem. Commun. 1998; 19
  • 10 Kobayashi S, Busujima T. Chem. Commun. 1998; 981
  • 11 Prakash GK. S, Mathew T, Olah GA. Acc. Chem. Res. 2012; 45: 565
  • 12 Kobayashi S, Ogawa C. Chem. Eur. J. 2006; 12: 5954
  • 13 Qiu R, Chen Y, Yin S.-F, Xu X, Au C.-T. RSC Adv. 2012; 2: 10774
  • 14 Li N, Zhang X, Xu X, Chen Y, Qiu R, Chen J, Wang X, Yin S.-F. Adv. Synth. Catal. 2013; 355: 2430
  • 15 Qiu R, Xu X, Li Y, Zhang G, Shao L, An D, Yin S. Chem. Commun. 2009; 1679
  • 16 Qiu R, Zhang G, Zhu Y, Xu X, Shao L, Li Y, An D, Yin S. Chem. Eur. J. 2009; 15: 6488
  • 17 Kobayashi S, Nagayama S, Busujima T. J. Am. Chem. Soc. 1998; 120: 8287
  • 18 de Léséleuc M, Collins SK. ACS Catal. 2015; 5: 1462
  • 19 Wu Y.-C, Li H.-J, Liu L, Demoulin N, Liu Z, Wang D, Chen Y.-J. Adv. Synth. Catal. 2011; 353: 907
  • 20 Ishitani H, Suzuki H, Saito Y, Yamashita Y, Kobayashi S. Eur. J. Org. Chem. 2015; 5485
  • 21 Hollis TK, Robinson NP, Bosnich B. J. Am. Chem. Soc. 1992; 114: 5464
  • 22 Hollis TK, Robinson NP, Bosnich B. Organometallics 1992; 11: 2745
  • 23 Hollis TK, Robinson NP, Bosnich B. Tetrahedron Lett. 1992; 33: 6423
  • 24 Hollis TK, Robinson NP, Whelan J, Bosnich B. Tetrahedron Lett. 1993; 34: 4309
  • 25 Hollis TK, Odenkirk W, Robinson NP, Whelan J, Bosnich B. Tetrahedron 1993; 49: 5415
  • 26 Hollis TK, Bosnich B. J. Am. Chem. Soc. 1995; 117: 4570
  • 27 Ellis WW, Gavrilova A, Liable-Sands L, Rheingold AL, Bosnich B. Organometallics 1999; 18: 332
  • 28 Thewalt U, Lasser W. J. Organomet. Chem. 1984; 276: 341
  • 29 Qiu R, Zhang G, Xu X, Zou K, Shao L, Fang D, Li Y, Orita A, Saijo R, Mineyama H, Suenobu T, Fukuzumi S, An D, Otera J. J. Organomet. Chem. 2009; 694: 1524
  • 30 Qiu R, Xu X, Peng L, Zhao Y, Li N, Yin S. Chem. Eur. J. 2012; 18: 6172
  • 31 Zhang X, Qiu R, Zhou C, Yu J, Li N, Yin S, Xu X. Tetrahedron 2015; 71: 1011
  • 32 Li N, Wang L, Zhang L, Zhao W, Qiao J, Xu X, Liang Z. ChemCatChem 2018; 10: 3532
  • 33 Li N, Wang Y, Liu F, Zhao X, Xu X, An Q, Yun K. Appl. Organomet. Chem. 2020; 34: e5454
  • 34 Qiu R, Zhu Y, Xu X, Li Y, Shao L, Ren X, Cai X, An D, Yin S. Catal. Commun. 2009; 10: 1889
  • 35 Qiu R, Zhang G, Ren X, Xu X, Yang R, Luo S, Yin S. J. Organomet. Chem. 2010; 695: 1182
  • 36 Tang Z, Jiang Q, Peng L, Xu X, Li J, Qiu R, Au C.-T. Green Chem. 2017; 19: 5396
  • 37 Renner R. Environ. Sci. Technol. 2001; 35: 154A
  • 38 Liu C, Gin KY. H, Chang VW. C, Goh BP. L, Reinhard M. Environ. Sci. Technol. 2011; 45: 9758
  • 39 Per- and polyfluoroalkyl substances (PFASs) - ECHA (accessed Mar 3, 2023): https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas
  • 40 Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
  • 41 Arnold K, Davies B, Hérault D, Whiting A. Angew. Chem. Int. Ed. 2008; 47: 2673
  • 42 Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
  • 43 Lanigan RM, Starkov P, Sheppard TD. J. Org. Chem. 2013; 78: 4512
  • 44 Mohy El Dine T, Erb W, Berhault Y, Rouden J, Blanchet J. J. Org. Chem. 2015; 80: 4532
  • 45 Sawant DN, Bagal DB, Ogawa S, Selvam K, Saito S. Org. Lett. 2018; 20: 4397
  • 46 Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2011; 48: 666
  • 47 Lundberg H, Tinnis F, Adolfsson H. Chem. Eur. J. 2012; 18: 3822
  • 48 Lundberg H, Tinnis F, Adolfsson H. Synlett 2012; 23: 2201
  • 49 Tinnis F, Lundberg H, Adolfsson H. Adv. Synth. Catal. 2012; 354: 2531
  • 50 Lundberg H, Adolfsson H. ACS Catal. 2015; 5: 3271
  • 51 Lundberg H, Tinnis F, Adolfsson H. Appl. Organomet. Chem. 2019; 33: e5062
  • 52 Arnold K, Batsanov AS, Davies B, Whiting A. Green Chem. 2008; 10: 124
  • 53 Ishihara K, Ohara S, Yamamoto H. Science 2000; 290: 1140
  • 54 Ishihara K, Nakayama M, Ohara S, Yamamoto H. Tetrahedron 2002; 58: 8179
  • 55 Villo P, Dalla-Santa O, Szabó Z, Lundberg H. J. Org. Chem. 2020; 85: 6959
  • 56 Blackmond DG. Angew. Chem. Int. Ed. 2005; 44: 4302
  • 57 Blackmond DG. J. Am. Chem. Soc. 2015; 137: 10852
  • 58 Burés J. Angew. Chem. Int. Ed. 2016; 55: 16084
  • 59 Burés J. Angew. Chem. Int. Ed. 2016; 55: 2028
  • 60 Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Green Chem. 2018; 20: 5082
  • 61 Dryzhakov M, Richmond E, Moran J. Synthesis 2016; 48: 935
  • 62 Emer E, Sinisi R, Capdevila MG, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
  • 63 Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
  • 64 Baeza A, Nájera C. Synthesis 2014; 46: 25
  • 65 Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
  • 66 Biswas S, Samec JS. M. Chem. Asian J. 2013; 8: 974
  • 67 Hellal M, Falk FC, Wolf E, Dryzhakov M, Moran J. Org. Biomol. Chem. 2014; 12: 5990
  • 68 Margarita C, Villo P, Tuñon H, Dalla-Santa O, Camaj D, Carlsson R, Lill M, Ramström A, Lundberg H. Catal. Sci. Technol. 2021; 11: 7420
  • 69 Jawerth M, Lawoko M, Lundmark S, Perez-Berumen C, Johansson M. RSC Adv. 2016; 6: 96281
  • 70 Jawerth M, Johansson M, Lundmark S, Gioia C, Lawoko M. ACS Sustain. Chem. Eng. 2017; 5: 10918
  • 71 Jawerth ME, Brett CJ, Terrier C, Larsson PT, Lawoko M, Roth SV, Lundmark S, Johansson M. ACS Appl. Polym. Mater. 2020; 2: 668
  • 72 Ribca I, Jawerth ME, Brett CJ, Lawoko M, Schwartzkopf M, Chumakov A, Roth SV, Johansson M. ACS Sustain. Chem. Eng. 2021; 9: 1692
  • 73 Margarita C, Di Francesco D, Tuñon H, Kumaniaev I, Rada CJ, Lundberg H. Green Chem. 2023; 25: 2401
  • 74 Lundberg H, Tinnis F, Zhang J, Algarra AG, Himo F, Adolfsson H. J. Am. Chem. Soc. 2017; 139: 2286