Synlett 2023; 34(12): 1437-1441
DOI: 10.1055/a-2033-8155
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Photoinduced Carboarylation of Alkenes by Using Bifunctional Reagents

Minseok Kim
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
,
Kangjae Lee
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
,
Seonyul Kim
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
,
Sungwoo Hong
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
› Author Affiliations
This research was supported financially by the Institute for Basic Science (IBS-R010-A2).


Abstract

Intermolecular alkene difunctionalization is an effective method for rapidly increasing molecular complexity with two valuable groups. We report a strategy for the photocatalytic radical-mediated desulfonylative carboarylation of alkenes by using strategically designed arylsulfonyl acetates as both arylating and carbonylating reagents. By using an Ir complex as a photocatalyst, aryl and carbonyl groups were simultaneously incorporated into alkenes to afford synthetically useful derivatives under mild reaction conditions. This transformation is characterized by a broad substrate scope and good functional-group compatibility.

Supporting Information



Publication History

Received: 10 January 2023

Accepted after revision: 13 February 2023

Accepted Manuscript online:
13 February 2023

Article published online:
07 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 1b Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 2a Peng J.-B. Adv. Synth. Catal. 2020; 362: 3059
    • 2b Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
    • 2c Takahashi F, Kurogi T, Yorimitsu H. Nat. Synth. 2023; 2: 162
    • 2d Fukazawa M, Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2020; 22: 2303
    • 3a Chu X.-Q, Ge D, Cui Y.-Y, Shen Z.-L, Li C.-J. Chem. Rev. 2021; 121: 12548
    • 3b Whalley DM, Duong HA, Greaney MF. Chem. Eur. J. 2019; 25: 1927
    • 3c Weidner K, Giroult A, Panchaud P, Renaud P. J. Am. Chem. Soc. 2010; 132: 17511
    • 4a Monos TM, McAtee RC, Stephenson CR. J. Science 2018; 361: 1369
    • 4b Noten EA, McAtee RC, Stephenson CR. J. Chem. Sci. 2022; 13: 6942
    • 4c Allen AR, Poon J.-F, McAtee RC, Watson NB, Pratt DA, Stephenson CR. J. ACS Catal. 2022; 12: 8511
    • 4d Allen AR, Noten EA, Stephenson CR. J. Chem. Rev. 2022; 122: 2695
    • 5a Yu J, Wu Z, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 17156
    • 5b Yu J, Zhang X, Wu X, Liu T, Zhang Z, Wu J, Zhu C. Chem 2023; 9: 472
    • 5c Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X.-S, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 8195
    • 6a Nquyen QH, Hwang HS, Cho EJ, Shin S. ACS Catal. 2022; 12: 8833
    • 6b Choi H, Mathi GR, Hong S, Hong S. Nat. Commun. 2022; 13: 1776
    • 6c Wang Y, Bao Y, Tang M, Ye Z, Yuan Z, Zhu G. Chem. Commun. 2022; 58: 3847
    • 6d Vellakkaran M, Kim T, Hong S. Angew. Chem. Int. Ed. 2022; 61: e202113658
    • 6e Huang H.-G, Li W, Zhong D, Wang H.-C, Zhao J, Liu W.-B. Chem. Sci. 2021; 12: 3210
    • 6f Kim K, Kim N, Hong S. Bull. Korean Chem. Soc. 2021; 42: 548
    • 6g Kweon B, Kim C, Kim S, Hong S. Angew. Chem. Int. Ed. 2021; 60: 26813
    • 6h Moon Y, Lee W, Hong S. J. Am. Chem. Soc. 2020; 142: 12420
    • 6i Lee K, Lee S, Kim N, Kim S, Hong S. Angew. Chem. Int. Ed. 2020; 59: 13379
    • 6j Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J. Am. Chem. Soc. 2020; 142: 20390
    • 6k Moon Y, Park B, Kim I, Kang G, Shin S, Kang D, Baik M.-H, Hong S. Nat. Commun. 2019; 10: 4117
    • 6l Mathi GR, Jeong Y, Moon Y, Hong S. Angew. Chem. Int. Ed. 2019; 59: 2049
    • 6m Kim M, Koo Y, Hong S. Acc. Chem. Res. 2022; 55: 3043
    • 7a Zultanski SL, Fu GC. J. Am. Chem. Soc. 2011; 133: 15362
    • 7b Smith SW, Fu GC. J. Am. Chem. Soc. 2009; 131: 14231
    • 7c Chen X, Liu X, Mohr JT. J. Am. Chem. Soc. 2016; 138: 6364
    • 7d Wang H, Liu H, Wang M, Huang M, Shi X, Wang T, Cong X, Yan J, Wu J. iScience 2021; 24: 102693
    • 7e Ishii T, Ota K, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 14073
    • 7f Matsuki Y, Ohnishi N, Kakeno Y, Takemoto S, Ishii T, Nagao K, Ohmiya H. Nat. Commun. 2021; 12: 3848
    • 8a Li S, Zhu R.-Y, Xiao K.-J, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 4317
    • 8b Liu W.-B, Okamoto N, Alexy EJ, Hong AY, Tran K, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 5234
    • 8c Fu L, Guptill DM, Davies HM. L, Fu L. J. Am. Chem. Soc. 2016; 138: 5761
    • 8d Franzoni I, Mazet C. Org. Biomol. Chem. 2014; 12: 233
    • 8e Mei T.-S, Werner EW, Burckle AJ, Sigman MS. J. Am. Chem. Soc. 2013; 135: 6830
    • 8f Matsumoto Y, Sawamura J, Murata Y, Nishikata T, Yazaki R, Ohshima T. J. Am. Chem. Soc. 2020; 142: 8498
    • 8g Tsuji T, Hashiguchi K, Yoshida M, Ikeda T, Koga Y, Honda Y, Tanaka T, Re S, Mizuguchi K, Takahashi D, Yazaki R, Ohshima T. Nat. Synth. 2022; 1: 304
    • 9a Yan J, Cheo HW, Teo WK, Shi X, Wu H, Idres SB, Deng L.-W, Wu J. J. Am. Chem. Soc. 2020; 142: 11357
    • 9b He C, Zhang K, Wang D.-N, Wang M, Niu Y, Duan X.-H, Liu L. Org. Lett. 2022; 24: 2767
    • 9c Li S, Wang Y, Wu Z, Shi W, Lei Y, Davies PW, Shu W. Org. Lett. 2021; 23: 7209
  • 10 7-Methoxy-7-oxo-4-phenylheptyl 4-Methoxybenzoate (3a); Typical Procedure The reaction was conducted in 16 mL test tube sealed with a PTFE/rubber septum. Methyl (phenylsulfonyl)acetate (1a) (0.12 mmol), CeCl3 (0.01 mmol), and Na2CO3 (0.15 mmol) were combined in anhyd DMF (0.5 mL) under N2, and a solution of TBACl (0.02 mmol) in H2O (0.1 mL) was added. The test tube was sealed and the mixture was stirred at r.t. for 1 h. A solution of pent-4-en-1-yl 4-methoxybenzoate (2a) in DMF (0.4 mL) was added under N2, and the test tube was rapidly purged with N2 (×3) then sealed and placed in a reaction bath equipped with a Kessil 440 nm blue LED (100% intensity) at a distance of 2 cm. The mixture was stirred and irradiated at rt for 16–20 h until the reaction was complete (TLC; EtOAc–hexane, 1:5), then diluted with EtOAc (15 mL) and washed with H2O (3 × 15 mL). The organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography [silica gel, EtOAc–hexane (1:5 to 1:10)] to give a colorless oil; yield: 18.5 mg (50%) 1H NMR (600 MHz, CDCl3): δ = 7.98–7.92 (m, 2 H), 7.30 (t, J = 7.5 Hz, 2 H), 7.24–7.18 (m, 1 H), 7.17–7.12 (m, 2 H), 6.94–6.88 (m, 2 H), 4.21 (td, J = 6.5, 1.2 Hz, 2 H), 3.86 (s, 3 H), 3.61 (s, 3 H), 2.58 (tt, J = 9.9, 5.0 Hz, 1 H), 2.21–2.09 (m, 2 H), 2.09–2.00 (m, 1 H), 1.93–1.83 (m, 1 H), 1.84–1.77 (m, 1 H), 1.76–1.69 (m, 1 H), 1.69–1.61 (m, 1 H), 1.62–1.53 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 174.2, 166.5, 163.4, 144.0, 131.7, 128.7, 127.8, 126.6, 123.0, 113.7, 113.7, 64.7, 55.6, 51.6, 45.3, 33.2, 32.3, 32.0, 27.0. HRMS (ESI+): m/z [M + H]+ calcd for C22H27O5: 371.1853; found: 371.1858.