Synthesis 2023; 55(10): 1525-1532
DOI: 10.1055/a-2004-1333
paper

Synthesis of 2-Alkyl-2-(2-furanyl)-1,3-cyclopentanediones

a   Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, nishi 8, kita-ku, Sapporo 060-0810, Japan
,
Yusuke Ozoe
b   Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, nishi 8, kita-ku, Sapporo 060-0810, Japan
,
Ranmaru Kato
b   Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, nishi 8, kita-ku, Sapporo 060-0810, Japan
,
a   Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, nishi 8, kita-ku, Sapporo 060-0810, Japan
,
Keiji Tanino
a   Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, nishi 8, kita-ku, Sapporo 060-0810, Japan
› Author Affiliations
This research was funded by JSPS KAKENHI, grant numbers JP20K05485, JP21H01923 and JP21K14616. This work was also founded by the Photo-excitonix Project of Hokkaido University.


Abstract

2,2-Disubstituted 1,3-cyclopentanediones are versatile building blocks for synthesizing complex natural products with bicyclic structures including cyclopentane rings. The reported method for the synthesis of these compounds involves the semi-pinacol rearrangement of a Mukaiyama aldol adduct prepared from a ketone/ketal and 1,2-bis(trimethylsilyloxy)cyclobutene. However, the adoption of α-oxy-functionalized ketones/ketals is quite difficult, as demonstrated by our experiments. To overcome this limitation of the method, 2-acylfuran derivatives were used as the reactants to synthesize 2,2-disubstituted 1,3-cyclopentanediones. Furthermore, two reaction conditions, that is, the use of 1.4 equivalents of a boron trifluoride-diethyl ether complex or 0.4 and 0.2 equivalent of trimethylsilyl triflate and methoxytrimethylsilane, respectively, were established for the conversion of 2-acylfurans into the corresponding 1,3-cyclopentanediones in acceptable yields. The transformations of the furan rings in the obtained products were also investigated.

Supporting Information



Publication History

Received: 28 October 2022

Accepted after revision: 27 December 2022

Accepted Manuscript online:
27 December 2022

Article published online:
31 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Present address: Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603 Japan.
  • 2 Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615
    • 4a Ikeuchi K, Haraguchi S, Yamada H, Tanino K. Chem. Pharm. Bull. 2022; 70: 435
    • 4b Komine K, Ninomiya R, Fukuda H, Ishihara J. Chem. Pharm. Bull. 2022; 70: 89
    • 4c Kawamoto Y, Noguchi N, Ozone D, Kobayashi T, Ito H. Tetrahedron Lett. 2021; 85: 153495
    • 4d Zhang Y, Tong X. Org. Lett. 2017; 19: 5462
    • 4e Cichowicz NR, Kaplan W, Khomutnyk Y, Bhattarai B, Sun Z, Nagorny P. J. Am. Chem. Soc. 2015; 137: 14341
    • 5a Siekmeyer B, Lübken D, Bajerke K, Bernhardt B, Schreiner PR, Kalesse M. Org. Lett. 2022; 24: 5812
    • 5b Kawamoto Y, Ozone D, Kobayashi T, Ito H. Eur. J. Org. Chem. 2020; 4050
    • 5c Schmiedel VM, Hong YJ, Lentz D, Tantillo DJ, Christmann M. Angew. Chem. Int. Ed. 2018; 57: 2419
    • 5d Koshino S, Kwon E, Hayashi Y. Eur. J. Org. Chem. 2018; 5629
    • 5e Mukai K, Kasuya S, Nakagawa Y, Urabe D, Inoue M. Chem. Sci. 2015; 6: 3383
  • 6 Ikeuchi K, Sasage T, Yamada G, Suzuki T, Tanino K. Org. Lett. 2021; 23: 9123
    • 7a Carr JM, Snowden TS. Tetrahedron 2008; 64: 2897
    • 7b Lavallée J.-F, Deslongchamps P. Tetrahedron Lett. 1988; 29: 6033
    • 7c Dauben WG, Bunce RA. J. Org. Chem. 1983; 48: 4642
    • 8a Wu G.-J, Zhang Y.-H, Tan D.-X, He L, Cao B.-C, He Y.-P, Han F.-S. J. Org. Chem. 2019; 84: 3223
    • 8b Bedekar AV, Watanabe T, Tanaka K, Fuji K. Synthesis 1995; 1069
    • 8c Schick H, Schwarz H, Finger A. Tetrahedron 1982; 38: 1279
    • 9a Jacques R, Pullin RD. C, Fletcher SP. Nat. Commun. 2019; 10: 21
    • 9b Aikawa K, Okamoto T, Mikami K. J. Am. Chem. Soc. 2012; 134: 10329
    • 9c Pottie IR, Crane SN, Gosse AL, Miller DO, Burnell DJ. Can. J. Chem. 2010; 88: 1118
    • 9d Trost BM, Simas AB. C, Plietker B, Jäkel C, Xie J. Chem. Eur. J. 2005; 11: 7075
    • 9e Vicart N, Goré J, Cazes B. Tetrahedron 1998; 54: 11063
    • 9f RajanBabu TV. J. Org. Chem. 1985; 50: 3642
  • 10 Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1977; 99: 961
    • 11a Crane SN, Burnell DJ. J. Org. Chem. 1998; 63: 1352
    • 11b Jenkins TJ, Burnell DJ. J. Org. Chem. 1994; 59: 1485
  • 12 Clark JS, Delion L, Farrugia LJ. Chem. Eur. J. 2015; 21: 4772
  • 13 Noyori R, Murata S, Suzuki M. Tetrahedron 1981; 37: 3899
  • 14 We also examined the use of TMSOCH2CH2OTMS instead of TMSOMe; however, the yield of 24a was poor (40% NMR yield).
  • 15 We isolated by-product 30 (Figure 1) in this reaction in a considerable yield (ca. 47%). IR (ATR): 3133, 2987, 2938, 1709, 1504, 1126, 934, 785 cm–1. 1H NMR (CDCl3, 500 MHz): δ = 6.27 (d, J = 3.5 Hz, 1 H), 6.17 (d, J = 3.5 Hz, 1 H), 3.82 (q, J = 7.0 Hz, 1 H), 2.76–2.73 (m, 2 H), 2.69–2.56 (m, 2 H), 1.44 (d, J = 7.0 Hz, 3 H). 13C NMR (CDCl3, 126 MHz): δ = 206.3, 178.0, 155.3, 121.0, 112.2, 109.6, 46.3, 34.8, 27.7, 14.5. HRMS (FD): m/z [M]+ calcd for C10H11 79BrO4: 273.9841; found: 273.9839. The m/z for the isotope C10H11 81BrO4 was detected at 275.9826.
  • 16 Kuwajima I, Urabe H. Tetrahedron Lett. 1981; 5191
  • 17 We also attempted at the conversion of 26 into 28 via the formation of boronic ester, followed by the oxidation; however, no desired products were obtained.
  • 18 Reddy MD, Kobori H, Mori T, Wu J, Kawagishi H, Watkins EB. J. Nat. Prod. 2017; 80: 2561
  • 19 Pelly SC, Parkinson CJ, van Otterlo WA. L, de Koning CB. J. Org. Chem. 2005; 70: 10474
  • 20 Sumiya T, Ishigami K, Watanabe H. Tetrahedron 2016; 72: 6982
  • 21 Crawford JJ, Henderson KW, Kerr WJ. Org. Lett. 2006; 8: 5073
  • 22 Qiu Z, Pham HD. M, Li J, Li C.-C, Castillo-Pazos DJ, Khaliullin RZ, Li C.-J. Chem. Sci. 2019; 10: 10937