Synthesis 2023; 55(18): 2979-2984
DOI: 10.1055/a-2000-8231
paper
Special Issue Electrochemical Organic Synthesis

Comparative Investigation of Electrocatalytic Oxidation of Cyclohexene by Proton-Exchange Membrane and Anion-Exchange Membrane Electrolyzers

Yuto Ido
a   Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
,
Yugo Shimizu
a   Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
,
Naoki Shida
a   Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
b   Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
,
Mahito Atobe
a   Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
b   Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
› Author Affiliations
This work was financially supported by JST CREST Grant No. JP65R1204400, Japan.


Abstract

Electrocatalytic oxidation of cyclohexene was performed in proton-exchange membrane (PEM) and anion-exchange membrane (AEM) electrolyzers. For the efficient electrocatalytic oxidation, the anode catalyst material, applied potential, and solvent used were optimized. In addition, the differences in reactivity between the PEM and AEM electrolyzers were clarified and a mechanism for the oxidation of cyclohexene in each electrolyzer was proposed.

Supporting Information



Publication History

Received: 28 November 2022

Accepted: 19 December 2022

Accepted Manuscript online:
19 December 2022

Article published online:
17 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ. Nature 2005; 437: 1132
    • 1b Matsumoto T, Ueno M, Wang N, Kobayashi S. Chem. Asian J. 2008; 3: 196
    • 1c Brydon RR. O, Peng A, Qian L, Kung HH, Broadbelt LJ. Ind. Eng. Chem. Res. 2018; 57: 4832
    • 2a van de Vyver S, Román-Leshkov Y. Catal. Sci. Technol. 2013; 3: 1465
    • 2b Delor M, Scattergood PA, Sazanovich IV, Parker AW, Greetham GM, Meijer AJ. H. M, Towrie M, Weinstein JA. Science 2014; 346: 1492
    • 2c Kohantorabi M, Gholami MR. Mater. Chem. Phys. 2018; 213: 472
    • 2d Shahabi Nejad M, Behzadi S, Sheibani H. Appl. Organomet. Chem. 2019; 33: e5245
  • 3 Yuan Y, Lei A. Nat. Commun. 2020; 11: 802
  • 4 Schäfer HJ. C. R. Chim. 2011; 14: 745
  • 5 Phillips R, Dunnill CW. RSC Adv. 2016; 6: 100643
  • 6 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 7 Yamanaka I, Furukawa T, Otsuka K. Chem. Commun. 2000; 2209
    • 8a Vincent I, Bessarabov D. Renew. Sustain. Energy Rev. 2018; 81: 1690
    • 8b Xu D, Stevens MB, Cosby MR, Oener SZ, Smith AM, Enman LJ, Ayers KE, Capuano CB, Renner JN, Danilovic N, Li Y, Wang H, Zhang Q, Boettcher SW. ACS Catal. 2019; 9: 7
    • 9a Carmo M, Fritz DL, Mergel J, Stolten D. Int. J. Hydrog. Energy 2013; 38: 4901
    • 9b Rodríguez-Peña M, Barrios Pérez JA, Llanos J, Sáez C, Rodrigo MA, Barrera-Díaz CE. Curr. Opin. Electrochem. 2021; 27: e100697
    • 10a Jörissen J. Electrochim. Acta 1996; 41: 553
    • 10b Green SK, Tompsett GA, Kim HJ, Kim WB, Huber GW. ChemSusChem 2012; 5: 2410
    • 10c Takano K, Tateno H, Matsumura Y, Fukazawa A, Kashiwagi T, Nakabayashi K, Nagasawa K, Mitsushima S, Atobe M. Bull. Chem. Soc. Jpn. 2016; 89: 1178
    • 10d Fukazawa A, Minoshima J, Tanaka K, Hashimoto Y, Kobori Y, Sato Y, Atobe M. ACS Sustain. Chem. Eng. 2019; 7: 11050
    • 10e Fukushima T, Yamauchi M. Chem. Commun. 2019; 55: 14721
    • 10f Fukazawa A, Tanaka K, Hashimoto Y, Sato Y, Atobe M. Electrochem. Commun. 2020; 115: 106734
    • 10g Fukazawa A, Shimizu Y, Shida N, Atobe M. Org. Biomol. Chem. 2021; 19: 7363
    • 10h Kawaguchi D, Ogihara H, Kurokawa H. ChemSusChem 2021; 14: 4431
    • 10i Nogami S, Shida N, Iguchi S, Nagasawa K, Inoue H, Yamanaka I, Mitsushima S, Atobe M. ACS Catal. 2022; 12: 5430
    • 10j Ido Y, Fukazawa A, Furutani Y, Sato Y, Shida N, Atobe M. ChemSusChem 2021; 14: 1
    • 10k Nogami S, Shida N, Iguchi S, Nagasawa K, Inoue H, Yamanaka I, Mitsushima S, Atobe M. ACS Catal. 2022; 12: 5430
  • 11 Donoeva BG, Ovoshchnikov DS, Golovko VB. ACS Catal. 2013; 3: 2986
  • 12 Nakamura K, Osamura Y. J. Am. Chem. Soc. 1993; 115: 9112
    • 13a Sheldon RA, Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981
    • 13b Cainelli G, Cardillo G. Chromium Oxidation in Organic Chemistry . Springer; Berlin: 1984
  • 14 Li D, Matanovic I, Lee AS, Park EJ, Fujimoto C, Chung HT, Kim YS. ACS Appl. Mater. Interfaces 2019; 11: 9696
  • 15 Miyake J, Taki R, Mochizuki T, Shimizu R, Akiyama R, Uchida M, Miyatake K. Sci. Adv. 2017; 3: 1
  • 16 Padgett E, Yarlagadda V, Holtz ME, Ko M, Levin BD. A, Kukreja RS, Ziegelbauer JM, Andrews RN, Ilavsky J, Kongkanand A, Muller DA. J. Electrochem. Soc. 2019; 166: F198