RSS-Feed abonnieren
DOI: 10.1055/a-1983-1640
Catalyst-Free Synthesis of Phosphorothioates via P–S Coupling Reaction of Dialkyl Phosphites with Thiols
Authors
The authors gratefully acknowledge support by the Institute for Advanced Studies in Basic Sciences (IASBS), Iran.

Abstract
A catalyst-free synthesis of phosphorothioates via a P–S cross-coupling reaction of thiols with dialkyl phosphites has been studied. With presented method, various phosphorothioates were obtained by the reaction of thiols with H-dialkyl phosphites in the presence of DMSO as both solvent and oxidant under transition-metal-free conditions. Mechanistic studies showed that the reaction proceeds with formation of a known disulfide intermediate via the oxidation of thiols in the presence of DMSO. Nucleophilic substitution of dialkyl phosphite with the disulfide intermediate gave phosphorothioate. The presented method is a convenient process for the synthesis of phosphorothioates under catalyst-free conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1983-1640.
Included are spectroscopic characterization data and copies of 1H and 13C NMR for
compounds 3a–p and 4.
- Supporting Information (PDF)
Publikationsverlauf
Eingereicht: 09. Oktober 2022
Angenommen nach Revision: 20. November 2022
Accepted Manuscript online:
20. November 2022
Artikel online veröffentlicht:
13. Dezember 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1
Jones DJ,
O’Leary EM,
O’Sullivan TP.
Adv. Synth. Catal. 2020; 362: 2801
Reference Ris Wihthout Link
- 2 Li NS, Frederiksen JK, Piccirilli JA. Acc. Chem. Res. 2011; 44: 1257
- 3 McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
- 4 Ozturk T, Ertasm E, Mert O. Chem. Rev. 2010; 110: 3419
- 5 Huang PJ. J, Wang F, Liu J. Anal. Chem. 2015; 87: 6890
- 6 Xie R, Zhao Q, Zhang T, Fang J, Mei X, Ning J, Tang Y. Bioorg. Med. Chem. 2013; 21: 278
- 7 Jahns H, Roos M, Imig J, Baumann F, Wang Y, Gilmour R, Hall J. Nat. Commun. 2015; 6: 6317
- 8 Zhang A, Sun J, Lin C, Hu X, Liu W. J. Agric. Food Chem. 2014; 62: 1477
- 9 Robertson FJ, Wu J. J. Am. Chem. Soc. 2012; 134: 2775
- 10 Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
- 11 Kaboudin B, Emadi S, Hadizadeh A. Bioorg. Chem. 2009; 37: 101
- 12 Kumar TS, Yang T, Mishra S, Cronin C, Chakraborty S, Shen J.-B, Liang BT, Jacobson KA. J. Med. Chem. 2013; 56: 902
- 13 Pandey VK, Dwivedi A, Pandey OP, Sengupta SK. J. Agric. Food Chem. 2008; 56: 10779
- 14 Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W, Tigyi G, Miller DD. J. Med. Chem. 2005; 48: 4919
- 15 Roux L, Priet S, Payrot N, Weck C, Fournier M, Zoulim F, Balzarini J, Canard B, Alvarez K. Eur. J. Med. Chem. 2013; 63: 869
- 16 Gabelt BT, Hennes EA, Seeman JL, Tian B, Kaufman PL. Invest. Ophthalmol. Visual Sci. 2004; 45: 2732
- 17 Barisic J, Cannon S, Quinn B. Sci. Rep. 2019; 16217
- 18 Kouvaris JR, Kouloulias VE, Vlahos LJ. Oncologist 2007; 12: 738
- 19 Dauterman WC, Viado GB, Casida JE, O’Brien RD. J. Agric. Food Chem. 1960; 8: 115
- 20 Morrison DC. J. Am. Chem. Soc. 1955; 77: 181
- 21 Gao YX, Tang G, Cao Y, Zhao Y.-F. Synthesis 2009; 1081
- 22 Zhang L, Zhang P, Li X, Xu J, Tang G, Zhao Y. J. Org. Chem. 2016; 81: 5588
- 23 Wang L, Yang S, Chen L, Yuan S, Chen Q, He M.-Y, Zhang Z.-H. Catal. Sci. Technol. 2017; 7: 2356
- 24 Xu J, Zhang L, Li X, Gao Y, Tang G, Zhao Y. Org. Lett. 2016; 18: 1266
- 25 Kumaraswamy G, Raju R. Adv. Synth. Catal. 2014; 356: 2591
- 26 Kaboudin B, Abedi Y, Kato J.-Y, Yokomatsu T. Synthesis 2013; 2323
- 27 Chen X.-Y, Pu M, Cheng H.-G, Sperger T, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 11395
- 28 Arisawa M, Watanabe T, Yamaguchi M. Tetrahedron Lett. 2011; 52: 2410
- 29 Gong X, Chen J, Liu J, Wu J. Org. Chem. Front. 2017; 4: 2221
- 30 Huang H, Ash J, Kang JY. Org. Biomol. Chem. 2018; 16: 4236
- 31 Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
- 32 Ouyang Y.-J, Li Y.-Y, Li N.-B, Xu X.-H. Chin. Chem. Lett. 2013; 24: 1103
- 33 Jones DJ, O’Leary EM, O’Sullivan TP. Adv. Synth. Catal. 2020; 362: 1825
- 34 Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Adv. Synth. Catal. 2020; 362: 65
- 35 Kaboudin B, Noori F, Dehghani L, Alavi S, Kazemi F. ChemistrySelect 2020; 5: 8717
- 36 Yiannios CN, Karabinos JV. J. Org. Chem. 1963; 28: 3246
- 37 Uraguchi D, Ito T, Ooi T. J. Am. Chem. Soc. 2009; 131: 3836
- 38 Chen Q, Zheng X, Guo F, Liang K, Zhou F. J. Org. Chem. 2021; 86: 18278
- 39 Synthesis of Phosphorothioates 3; General Procedure: Thiol (1 mmol) was added to a solution of dialkyl phosphite (2 mmol) in DMSO (2 mL). The reaction mixture was stirred for 12–24 h (Table 2) at 90 °C. EtOAc (20 mL) was added to the reaction mixture and the mixture was washed with NaOH (5%, 10 mL) and brine (10 mL). The organic phase was evaporated, and the pure product was obtained by flash on silica gel with n-hexane–EtOAc (9:1 to 6:4). All products gave satisfactory spectral data in accord with the assigned structures and literature reports (see the Supporting Information).