Synthesis
DOI: 10.1055/a-1961-8013
paper

Development, Synthesis, and in silico Investigations of Novel Acyclic Allyl Fluoride Derivatives

Nishita Chauhan
a   Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
,
Harjinder Singh
b   P. G. Department of Chemistry, Multani Mal Modi College, Patiala, Punjab 147001, India
,
Kamal Nain Singh
a   Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
,
Jeffrey M. McKenna
c   Novartis Institutes of BioMedical Research, Lichtstrasse 35, Basel 4056, Switzerland
,
Vaneet Saini
a   Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
› Author Affiliations
V.S. thanks Department of Science and Technology for DST-Inspire Faculty grant (DST/INSPIRE/04/2017/002529).


Abstract

A one step electrophilic fluorination of alkenes is reported, which furnishes the products in a highly regioselective manner via allylic rearrangement. The reaction proceeds efficiently under mild conditions with the use of trisubstituted alkenes as olefin partner and Selectfluor as an electrophilic fluorinating agent without the need of any transition metal catalyst or pre-functionalized substrates. Virtual screening of the newly synthesized compounds shows their potential application as herbicides by inhibiting protoporphyrinogen oxidase (PPO) enzyme.

Supporting Information



Publication History

Received: 24 June 2022

Accepted after revision: 17 October 2022

Accepted Manuscript online:
17 October 2022

Article published online:
23 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2a Press NJ, Joly E, Ertl P. Prog. Med. Chem. 2019; 58: 157
    • 2b Ertl P, Altmann E, McKenna JM. J. Med. Chem. 2020; 63: 8408
    • 2c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 3a Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 3b Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 3c Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
  • 4 Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 5a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 5b Hunter L. Beilstein J. Org. Chem. 2010; 6: 38
    • 5c Mondal R, Agbaria M, Nairoukh Z. Chem. Eur. J. 2021; 27: 7193
    • 6a Müller K, Faeh C, Diederich F. Science 2007; 317 5846 1881
    • 6b Shah P, Westwell AD. J. Enzyme Inhib. Med. Chem. 2007; 22: 527
    • 6c Ojima I. J. Org. Chem. 2013; 78: 6358
    • 6d Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 6e Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 6f Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Chem. Eur. J. 2020; 26: 11349
    • 7a Itoh T, Murota I, Yoshikai K, Yamada S, Yamamoto K. Biorg. Med. Chem. 2006; 14: 98
    • 7b Bannai K, Toru T, Ōba T, Tanaka T, Okamura N, Watanabe K, Hazato A, Kurozumi S. Tetrahedron 1983; 39: 3807
  • 8 Pacheco MC, Purser S, Gouverneur V. Chem. Rev. 2008; 108: 1943
  • 9 Sorlin AM, Usman FO, English CK, Nguyen HM. ACS Catal. 2020; 10: 11980
    • 10a Laurenson JA. B, Meiries S, Percy JM, Roig R. Tetrahedron Lett. 2009; 50: 3571
    • 10b Kim DW, Jeong H.-J, Lim ST, Sohn M.-H. Angew. Chem. Int. Ed. 2008; 47: 8404
  • 11 Caravano A, Field RA, Percy JM, Rinaudo G, Roig R, Singh K. Org. Biomol. Chem. 2009; 7: 996
    • 12a Middleton WJ. J. Org. Chem. 1975; 40: 574
    • 12b Singh RP, Shreeve JM. Synthesis 2002; 2561
  • 13 Bresciani S, Slawin AM. Z, O’Hagan D. J. Fluorine Chem. 2009; 130: 537
    • 14a Luo H.-Q, Loh T.-P. Tetrahedron Lett. 2009; 50: 1554
    • 14b Greedy B, Paris J.-M, Vidal T, Gouverneur V. Angew. Chem. Int. Ed. 2003; 42: 3291
    • 14c Thibaudeau S, Gouverneur V. Org. Lett. 2003; 5: 4891
    • 14d DesMarteau DD, Xu ZQ, Witz M. J. Org. Chem. 1992; 57: 629
    • 14e Umemoto T, Fukami S, Tomizawa G, Harasawa K, Kawada K, Tomita K. J. Am. Chem. Soc. 1990; 112: 8563
    • 14f Vincent SP, Burkart MD, Tsai C.-Y, Zhang Z, Wong C.-H. J. Org. Chem. 1999; 64: 5264
    • 14g Bloom S, Knippel JL, Holl MG, Barber R, Lectka T. Tetrahedron Lett. 2014; 55: 4576
    • 14h Baudoux J, Cahard D. Org. React. 2007; 69: 347
    • 15a Li X, Shi X, Li X, Shi D. Beilstein J. Org. Chem. 2019; 15: 2213
    • 15b Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
  • 16 Rozatian N, Ashworth IW, Sandford G, Hodgson DR. W. Chem. Sci. 2018; 9: 8692
  • 17 de Meijere A, Diedrich F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. Wiley; 2004
  • 18 Sethi A, Joshi K, Sasikala K, Alvala M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications . In Drug Discovery and Development . Gaitonde V, Karmakar P, Trivedi A. IntechOpen; London: 2019
    • 19a Hao G.-F, Zuo Y, Yang S.-G, Yang G.-F. Chimia 2011; 65: 961
    • 19b Hao G.-F, Zhan C.-G, Yang G.-F. Future Med. Chem. 2014; 6: 597
    • 20a Hao G.-F, Tan Y, Yu N.-X, Yang G.-F. J. Comput. Aided Mol. Des. 2011; 25: 213
    • 20b Zhao L.-X, Peng J.-F, Hu J.-J, Zou Y.-L, Yin M.-L, Wang Z.-X, Gao S, Fu Y, Ye F. J. Mol. Struct. 2022; 1258: 132670
  • 21 Qin X, Tan Y, Wang L, Wang Z, Wang B, Wen X, Yang G, Xi Z, Shen Y. FASEB J 2011; 25: 653