Subscribe to RSS
DOI: 10.1055/a-1948-7153
Synthesis of Lincosamide Analogues via Oxime Resin Aminolysis
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the PROTEO Catalyst Grant Program. T.T. and C. B. thanks the NSERC for a postgraduate fellowship, P. H., G. R.-S., and J. A. thanks the NSERC for an Undergraduate Student Research Award.
Abstract
In this work, the synthetic development of an oxime resin aminolysis to lincosamide analogues is described. This synthetic endeavor hinges on a protecting-group-free strategy of the amino sugar nucleophiles. The cleavage from the solid support is achieved under mild conditions in a buffer solution and allows the preparation of a wide diversity of amino acid moieties onto glycosylamine scaffolds. The strategy is further exploited using methylthiolincosamine to generate rapidly complex lincomycin analogues. The results pave the way to access efficiently novel potentially relevant antibacterial compounds.
Key words
lincosamide analogues - oxime resin aminolysis - protecting-group-free synthesis - lincomycin analogues - antibacterial compounds - solid-phase synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1948-7153.
- Supporting Information
Publication History
Received: 10 August 2022
Accepted after revision: 21 September 2022
Accepted Manuscript online:
21 September 2022
Article published online:
03 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Spizek J, Novotna J, Rezanka T. Adv. Appl. Microbiol. 2004; 56: 121
- 2a Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Nature 2001; 413: 814
- 2b Tenson T, Lovmar M, Ehrenberg M. J. Mol. Biol. 2003; 330: 1005
- 3 Kirillov S, Porse BT, Vester B, Woolley P, Garett R. FEBS Lett. 1997; 406: 223
- 4 Mason DJ, Dietz A, De Boer C.. Antimicrob. Agents Chemother. 1962; 554
- 5 Sztarricskai F, Batta G, Dinya G, Hornyak M, Roth E. J. Antibiot. 1999; 52: 1050
- 6a Schroeder W, Bannister B, Hoeksema H. J. Am. Chem. Soc. 1967; 89: 2448
- 6b Sztarricskai F, Dinya Z, Batta G, Masuma R, Omura S. Magy Kem. Foly., Kem. Kozl. 1997; 103: 524
- 6c Collin M.-P, Hobbie SN, Bottger EC, Vasella A. Helv. Chim. Acta 2008; 91: 1838
- 6d Argoudelis AD, Coats JH, Mason DJ, Sebek OK. J. Antibiot. 1969; 22: 309
- 6e Magerlein BJ, Kagan F. J. Med. Chem. 1969; 12: 780
- 6f Magerlein BJ. J. Med. Chem. 1972; 15: 1255
- 6g Birkenmeyer RD, Kroll SJ, Lewis C, Stern KF, Zurenko GE. J. Med. Chem. 1984; 27: 216
- 6h Pospisil S, Sedmera P, Halada P, Havlicek L, Spizek J. Tetrahedron Lett. 2004; 45: 2943
- 7a Sztarricskai F, Dinya G, Batta A, Mocsrai M, Hollosi Z, Majer R, Masuma R, Omura S. J. Antibiot. 1997; 50: 866
- 7b Collin M.-P, Hobbie SN, Bottger EC, Vasella A. Helv. Chim. Acta 2009; 92: 230
- 8 Hanessian S, Kothakonda KK. Bioorg. Med. Chem. 2005; 13: 5283
- 9a Umemura E, Wakiyama Y, Kumura K, Ueda K, Masaki S, Watanabe T, Yamamoto M, Hirai Y, Fushimi H, Yoshida T, Ajito K. J. Antibiot. 2013; 66: 195
- 9b Umemura E, Kumura K, Masaki S, Ueda K, Wakiyama Y, Sato Y, Yamamoto M, Ajito K, Watanabe T, Kaji C. US 20100184746A1, 2010
- 9c Lewis J, Patel DV, Kumar AS, Gordeev MF. WO 2004016632 A2
- 9d Sztaricskai F, Dinya Z, Puskaa MM, Batta G, Masuma R, Omura S. J. Antibiot. 1996; 49: 941
- 10a Osono T, Umezawa H. J. Antimicrob. Chemother. 1985; 16: 151
- 10b Magerlein BJ, Birkenmeyer RD, Kagan F. Antimicrob. Agents Chemother. 1966; 727
- 10c Birkenmeyer RD, Kagan F. J. Med. Chem. 1970; 13 : 616
- 11 Hirai Y, Maebashi K, Yamada K, Wakiyama Y, Kumura K, Umemura E, Ajito K. J. Antibiot. 2021; 74: 124
- 12 Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, Terwilliger DW, Testolin G, Pote AR, Wu KJ. Y, Ladley RP, Chatman K, Mankin AS, Polikanov YS, Myers AG. Nature 2021; 599: 507
- 13 Mitcheltree MJ, Stevenson JW, Pisipati A, Myers AG. J. Am. Chem. Soc. 2021; 143: 6829
- 14 Mason JD, Terwilliger DW, Pote AR, Myers AG. J. Am. Chem. Soc. 2021; 143: 11019
- 15a Bauman AC, Broderick JC, Dacus RM. IV, Grover DA, Trzupek LS. Tetrahedron Lett. 1993; 34: 7019
- 15b DeGrado WF, Kaiser ET. J. Org. Chem. 1980; 45: 1295
- 15c DeGrado WF, Kaiser ET. J. Org. Chem. 1982; 47: 3258
- 16a Bérubé C, Gagnon D, Borgia A, Richard D, Voyer N. Chem. Commun. 2019; 55: 7434
- 16b Bérubé C, Borgia A, Voyer N. Org. Biomol. Chem. 2018; 16: 9117
- 16c Voyer N, Lavoie A, Pinette M, Bernier J. Tetrahedron Lett. 1994; 35: 355
- 17 Tremblay T, Robert-Scott G, Bérubé C, Carpentier A, Voyer N, Giguère D. Chem. Commun. 2019; 55: 13741
- 18a Ramesh R, Sonawane S, Reddy DS, Bandichhor R. Protecting-Group-Free Synthesis of Drugs and Pharmaceuticals . In Protecting-Group-Free Organic Synthesis . Fernandes RA. Wiley; Hoboken: 2018: 155-181
- 18b Young IS, Baran PS. Nat. Chem. 2009; 1: 193
- 18c Trost BM. Science 1991; 254: 1471
- 18d Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 19a Bérubé C, Borgia A, Gagnon D, Mukherjee A, Richard D, Voyer N. J. Nat. Prod. 2020; 83: 1778
- 19b Smith RA, Bobko MA, Lee W. Bioorg. Med. Chem. Lett. 1998; 8: 2369
- 20a Cordero-Vargas A, Sartillo-Piscil F. Protecting-Group-Free Synthesis in Carbohydrate Chemistry. In Protecting-Group-Free Organic Synthesis . Fernandes RA. Wiley; Hoboken: 2018: 183-200
- 20b Tanaka T. Protecting-Group-Free Synthesis of Glycosyl Derivatives, Glycopolymers, and Glycocojugates. In Protecting-Group-Free Organic Synthesis. Fernandes RA. Wiley; Hoboken: 2018: 201-228
- 20c Vasicek T, Spiwok V, Cerveny J, Petraskova L, Bumba L, Vrbata D, Pelantova H, Kren V, Bojarova P. Chem. Eur. J. 2020; 26: 9620
- 20d Dussouy C, Téletchéa S, Lambert A, Charlier C, Botez I, De Ceuninck F, Grandjean C. J. Org. Chem. 2020; 85: 16099
- 20e Tejler J, Leffler H, Nilsson UJ. Bioorg. Med. Chem. Lett. 2005; 15: 2343
- 20f Bergh A, Leffler H, Sundin A, Nilsson UJ, Kann N. Tetrahedron 2006; 62: 8309
- 21 St-Gelais J, Giguère D. Synthesis 2021; 53: 3735
- 22 Cheng JM. H, Chee SH, Knight DA, Acha-Orbea H, Hermans IF, Timmer MS. M, Stocker BL. Carbohydr. Res. 2011; 346: 914
- 23 Typical Experimental Procedure for the Cleavage of Oxime Resin To a peptide synthesis vessel was added the oxime resin (1.1 mmol g–1, 1.25 equiv) and was swelled with CH2Cl2 (3 × 5 mL). To a solution of the oxime resin in CH2Cl2/DMF (8:2, 0.02 M) were added amino sugar (1 equiv) and DIPEA (2.5 equiv). The vessel was mechanically stirred for a few seconds, and acetic acid (5 equiv) was added to the mixture. The peptide synthesis vessel was mechanically stirred at room temperature until starting material was consumed (overnight). The content of the vessel was then collected in a flask and the resin was washed with CH2Cl2 (3 × 5 mL) and MeOH (3 × 5 mL). The organic phase was concentrated under reduced pressure, and the resulting crude was purified by flash column chromatography. Characterization Data for S-Methyl 6-Deoxy-6-{[N-(N-acetyl)-glycinyl]}-l-leucylamido-α-thiolincosaminide (10) Rf = 0.49 (silica, MeOH/DCM, 1:4); [α]D 25 96.2 (c 0.3, MeOH). IR (ATR, diamond): ν = 3307, 1659, 1642, 1285, 1075, 1049 cm–1. 1H NMR (500 MHz, D2O): δ = 5.35 (d, 3 J H1–H2 = 5.8 Hz, 1 H, H1), 4.34 (dd, 3 J CHαLeu–CH2αβLeu = 9.8 Hz, 3 J CHαLeu-CH2αβLeu = 5.0 Hz, 1 H, CHαLeu), 4.29 (dd, 3 J H6–H5 = 9.7 Hz, 3 J H6–H7 = 4.5 Hz, 1 H, H6), 4.23 (dd, 3 J H5–H6 = 9.7 Hz, 3 J H5–H4 = 1.2 Hz, 1 H, H5), 4.111 (qd, 3 J H7–H8a = 3 J H7–H8b = 3 J H7–H8c = 6.5 Hz, 3 J H7–H6 = 4.5 Hz, 1 H, H7), 4.095 (dd, 3 J H2–H3 = 10.2 Hz, 3 J H2–H1 = 5.7 Hz, 1 H, H2), 3.93 (dd, 3 J H4–H3 = 3.2 Hz, 3 J H4–H5 = 1.2 Hz, 1 H, H4), 3.89 (d, 2 J CH2aGly–CH2bGly = 17.0 Hz, 1 H, CH2bGly), 3.64 (dd, 3 J H3–H2 = 10.4 Hz, 3 J H3–H4 = 3.2 Hz, 1 H, H3), 2.13 (s, 3 H, SCH3), 2.05 (s, 3 H, COCH3), 1.71–1.57 (m, 3 H, CH2βLeu, CHγLeu), 1.13 (d, 3 J CH3(8)–H7 = 6.5 Hz, 3 H, CH3(8)), 0.94 (d, 3 J CH3δ1Leu–CHγLeu = 6.1 Hz, 1 H, CH3δ1Leu), 0.88 (d, 3 J CH3δ2Leu–CHγLeu = 6.1 Hz, 1 H, CH3δ2Leu) ppm. 13C NMR (126 MHz, D2O): δ = 174.9, 174.8, 171.7 (3 C, 3 × CO), 88.0 (1 C, C1), 70.2 (1 C, C3), 69.4 (1 C, C5), 68.3 (1 C, C4), 67.6 (1 C, C2), 66.7 (1 C, C7), 53.1 (1 C, C6), 52.7 (1 C, CHαLeu), 42.4 (1 C, CH2Gly), 39.6 (1 C, CH2βLeu), 24.2 (1 C, CH2γLeu), 22.0 (1 C, CH3δ1Leu), 21.6 (1 C, COCH3), 20.5 (1 C, CH3δbLeu), 15.9 (1 C, C8), 12.8 (1 C, SCH3) ppm. HRMS (ESI) m/z [M + H]+ calcd for C19H36N3O8S+: 466.2218; found: 466.2209. Characterization Data for S-Methyl 6-Deoxy-6-{[N-(N-tert-butoxycarbonyl)-l-phenylalanyl]-l-alanylamido}-α-thiolincosaminide (11) Rf = 0.32 (silica, MeOH/DCM, 1:9); [α]D 25 120.4 (c 0.4, MeOH). IR (ATR, diamond): ν = 3333, 2926, 1691, 1631, 1530, 1168, 1050 cm–1. 1H NMR (500 MHz, CD3OD): δ = 7.31–7.19 (m, 5 H, Ar–Phe), 5.26 (d, 3 J H1–H2 = 5.6 Hz, 1 H, H1), 4.33 (q, 3 J CHαPhe–CH3aAla = 3 J CHαPhe–CH3bAla = 3 J CHαPhe–CH3cAla = 7.3 Hz, 1 H, CHαAla), 4.32 (dd, 3 J CHαPhe–CH2bPhe = 9.9 Hz, 3 J CHαPhe–CH2aPhe = 4.7 Hz, 1 H, CHαPhe), 4.25–4.18 (m, 2 H, H5, H6), 4.09 (dd, 3 J H2–H3 = 10.1 Hz, 3 J H2–H1 = 5.6 Hz, 1 H, H2), 4.00 (p, 3 J H7–H8a = 3 J H7–H8b = 3 J H7–H8b = 3 J H7–H6 = 6.2 Hz, 1 H, H7), 3.95 (d, 3 J H4–H3 = 3.4 Hz, 1 H, H4), 3.56 (dd, 3 J H3–H2 = 10.2 Hz, 3 J H3–H4 = 3.4 Hz, 1 H, H3), 3.16 (dd, 2 J CH2aPhe–CH2bPhe = 13.9 Hz, 3 J CH2aPhe–CHαPhe = 4.7 Hz, 1 H, CH2aPhe), 2.80 (dd, 2 J CH2bPhe–CH2aPhe = 14.1 Hz, 3 J CH2bPhe–CHαPhe = 9.9 Hz, 1 H, CH2bPhe), 2.10 (s, 3 H, SCH3), 1.39 (d, 3 J CH3Ala–CHαAla = 7.3 Hz, 3 H, CH3Ala), 1.35 (s, 9 H, C(CH3)3), 1.19 (d, 3 J C H3 (8)–H7 = 6.4 Hz, 3 H, CH3(8)) ppm. 13C NMR (126 MHz, CD3OD): δ = 175.7, 174.5, 157.8 (3 C, 3 × CO), 138.7, 130.4, 129.4, 127.7 (6 C, Ar–Phe), 89.9 (1 C, C1), 80.7 (1 C, C(CH3)3), 71.9 (1 C, C3), 70.8 (1 C, C5), 70.4 (1 C, C4), 69.5 (1 C, C2), 68.1 (1 C, C7), 57.2 (1 C, CHαPhe), 55.8 (1 C, C6), 50.9 (1 C, CHαAla), 39.1 (1 C, CH2Phe), 28.7 (3 C, C(CH3)3), 18.5 (1 C, C8), 17.9 (1 C, CH3Ala), 13.6 (1 C, SCH3) ppm. HRMS (ESI): m/z [M + H]+ calcd for C26H42N3O9S+: 572.2636; found: 572.2640.