Synlett 2023; 34(05): 437-440
DOI: 10.1055/a-1946-6578
cluster
Special Edition Thieme Chemistry Journals Awardees 2022

Computational Investigation of the Aza-Cope Rearrangement Leading to Angularly Substituted 1-Azabicyclic Rings

a   Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
b   Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
c   Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
,
Yener Fetisleam
b   Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
,
a   Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
b   Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
› Author Affiliations
We thank the University of Vienna for support of research programs and the Doctoral School in Chemistry for funding.


Abstract

A computational study of the aza-Cope rearrangement leading to angularly substituted 1-azabicyclic ring systems is presented. The calculations estimate the probability of the proton transfer between reaction intermediates and protic solvents, explain the experimentally observed reaction selectivity, and suggest new potentially more efficient systems for further in vitro and in silico investigations.

Supporting Information



Publication History

Received: 30 July 2022

Accepted after revision: 18 September 2022

Accepted Manuscript online:
18 September 2022

Article published online:
28 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Knight SD, Overman LE, Pairaudeau G. J. Am. Chem. Soc. 1995; 117: 5776
  • 2 Ziegler FE, Kloek JA, Zoretic PA. J. Am. Chem. Soc. 1969; 91: 4943
  • 3 Smith MT, Crouch NR, Gericke N, Hirst M. J. Ethnopharmacol 1996; 50: 119
  • 4 Ito T, Overman LE, Wang J. J. Am. Chem. Soc. 2010; 132: 3272
  • 5 Reggelin M, Junker B, Heinrich T, Slavik S, Bühle P. J. Am. Chem. Soc. 2006; 128: 4023
  • 6 Shi S, Szostak M. Org. Lett. 2015; 17: 5144
  • 7 Aron ZD, Overman LE. Org. Lett. 2005; 7: 913
  • 8 Aron ZD, Ito T, May TL, Overman LE, Wang J. J. Org. Chem. 2013; 78: 9929
  • 9 Liu W.-B, Okamoto N, Alexy EJ, Tran K, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 5234
  • 10 Liu J, Cao CG, Sun HB, Zhang X, Niu D. J. Am. Chem. Soc. 2016; 138: 13103
  • 11 Mou ZD, Zhang X, Niu D. Green Synth. Catal. 2021; 2: 70
  • 12 Computational DetailsThe conformational space of all molecules has been initially searched using meta-dynamics simulations based on tight-binding quantum chemical calculations as implemented in the software package conformer-rotamer ensemble sampling tool (CREST). The structures located with CREST have then been subjected to a B3LYP-D3BJ/def2-SVP geometry optimization. The nature of all stationary points (minima and transition states) was verified through the computation of harmonic vibrational frequencies. The thermal corrections to the Gibbs free energies were combined with the single point energies calculated at the B3LYP-D3BJ/def2-TZVP level of theory to yield Gibbs free energies (‘G 298’) at 298.15 K. The DFT calculations have been performed with the Gaussian 16 program package. The SMD model with parameters of methanol was applied to consider implicit solvation effects in both, the geometries, and energies. All energies are reported in kcal/mol. The energy profiles were constructed using the most stable conformation (the global minimum) of each intermediate and transition state. Free energies in solution have been corrected to a reference state of 1 mol/L at 298.15 K through the addition of RTln(24.46) = +7.925 kJ/mol to the gas phase (1 atm) free energies.
  • 13 Becke A. J. Chem. Phys. 1993; 98: 5648
  • 14 Cancès E, Mennucci B, Tomasi J. J. Chem. Phys. 1997; 107: 3032
  • 15 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 16 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian Inc; Wallingford CT: 2016
  • 17 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
  • 18 Vosko SH, Wilk L, Nusair M. Can. J. Phys. 1980; 58: 1200
  • 19 Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623
  • 20 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
  • 21 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 22 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 23 Pracht P, Bohle F, Grimme S. Phys. Chem. Chem. Phys. 2020; 22: 7169
  • 24 Grimme S. J. Chem. Theory Comput. 2019; 15: 2847
  • 25 Brown HC, Salunkhe AM. Tetrahedron Lett. 1993; 34: 1265