Synlett 2023; 34(03): 193-202
DOI: 10.1055/a-1941-2205
synpacts

Improvements in Efficiency and Selectivity for C–F Bond Halogen-Exchange Reactions by Using Boron Reagents

Andrej Ćorković
a   University of Iowa, Chemistry Building, Iowa City, IA 52246, USA
,
Andreas Dorian
b   University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G-2G2, Canada
,
a   University of Iowa, Chemistry Building, Iowa City, IA 52246, USA
› Author Affiliations


Abstract

The use of boron Lewis acids as instigators of bond cleavage offers a number of synthetic possibilities. A unique feature of this class of reagents is the ability to functionalize otherwise inert C–F bonds. We summarize notable developments in C–F bond halogen exchange using Lewis acidic boron reagents and we conclude by featuring our group’s advances in activating CF3 groups by using boron trihalides.

1 Introduction

2 Boron-Mediated Halogen Exchange

3 Mono-Selective C–F Activation

4 Conclusions



Publication History

Received: 16 August 2022

Accepted after revision: 12 September 2022

Accepted Manuscript online:
12 September 2022

Article published online:
25 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Hall DG. Chem. Soc. Rev. 2019; 48: 3475
    • 2b Ishihara K, Yamamoto H. Eur. J. Org. Chem. 1999; 1999: 527
    • 2c Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
    • 2d Rao B, Kinjo R. Chem. Asian J. 2018; 13: 1279

      For alternative types of boron-catalyzed processes, see:
    • 3a Bage AD, Nicholson K, Hunt TA, Langer T, Thomas SP. ACS Catal. 2020; 10: 13479
    • 3b Kumar G, Roy S, Chatterjee I. Org. Biomol. Chem. 2021; 19: 1230
  • 4 Babcock L, Pizer R. Inorg. Chem. 1980; 19: 56
  • 5 Atienza BJ. P, Truong N, Williams FJ. Org. Lett. 2018; 20: 6332
  • 6 Dorian A, Landgreen EJ, Petras HR, Shepherd JJ, Williams FJ. Chem. Eur. J. 2021; 27: 10839
  • 7 Zain M, Kazmi H, Karmakar A, Michaelis VK, Williams FJ. Tetrahedron 2019; 75: 1465
  • 8 Gupta R, Young RD. Synthesis 2022; 54: 1671

    • For a general overview of C–F activation strategies, see:
    • 9a Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
    • 9b Burdeniuc J, Jedlicka B, Crabtree RH. Chem. Ber. 1996; 130: 145
    • 9c Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 9d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 10 Jaroschik F. Chem. Eur. J. 2018; 24: 14572
  • 11 Grant DJ, Dixon DA. J. Phys. Chem. A 2009; 113: 777
  • 12 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 13 Lemal DM. J. Org. Chem. 2004; 69: 1
  • 14 Glockler G. J. Phys. Chem. 1959; 63: 828
  • 15 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
  • 16 Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
  • 17 Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
  • 18 Alonso C, Martinez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 19 Guidotti J, Schanen V, Tordeux M, Wakselman C. J. Fluorine Chem. 2005; 126: 443
  • 20 Heijnen D, Gualtierotti J.-B, Hornillos V, Feringa BL. Chem. Eur. J. 2016; 22: 3991
  • 21 Bhasin KK, Gupta V, Sharma RP. Synth. Commun. 1993; 23: 1863
  • 22 Rajca A, Rajca S, Wongsriratanakul J, Ross CR. Polyhedron 2001; 20: 1669
    • 23a Barbero M, Cadamuro S, Degani I, Fochi R, Gatti A, Regondi V. Synthesis 1986; 1074
    • 23b Belen’kii LI, Brokhovetskii DB, Krayushkin MM. Tetrahedron 1990; 46: 1659
    • 23c Chatterjee T, Kim DI, Cho EJ. J. Org. Chem. 2018; 83: 7423
  • 24 Chivers T. Can. J. Chem. 1970; 48: 3856
  • 25 Yoshida S, Shimomori K, Kim Y, Hosoya T. Angew. Chem. Int. Ed. 2016; 55: 10406
  • 26 Richmond TG, Shriver DF. Organometallics 1983; 2: 1061
  • 27 Richmond TG, Shriver DF. Organometallics 1984; 3: 305
  • 28 Tyrra W, Naumann D. J. Fluorine Chem. 1989; 45: 401
  • 29 Namavari M, Satyamurthy N, Phelps ME, Barrio JR. Tetrahedron Lett. 1990; 31: 4973
  • 30 Namavari M, Satyamurthy N, Barrio JR. J. Fluorine Chem. 1995; 72: 89
  • 31 Swarnakar AK, Hering-Junghans C, Ferguson MJ, McDonald R, Rivard E. Chem. Eur. J. 2017; 23: 8628
    • 32a Gu W, Haneline MR, Douvris C, Ozerov OV. J. Am. Chem. Soc. 2009; 131: 11203
    • 32b Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
  • 33 Jaiswal AK, Prasad PK, Young RD. Chem. Eur. J. 2019; 25: 6290
  • 34 Prakash GK. S, Hu J, Simon J, Bellew DR, Olah GA. J. Fluorine Chem. 2004; 125: 595
  • 35 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
    • 36a Zhu J, Ni C, Gao B, Hu J. J. Fluorine Chem. 2015; 171: 139
    • 36b Liebing P, Oehler F, Wagner M, Tripet PF, Togni A. Organometallics 2018; 37: 570
    • 36c Uno M, Sumino S, Fukuyama T, Matsuura M, Kuroki Y, Kishikawa Y, Ryu I. J. Org. Chem. 2019; 84: 9330
    • 36d Zhang K.-F, Bian K.-J, Li C, Sheng J, Li Y, Wang X.-S. Angew. Chem. Int. Ed. 2019; 58: 5069
    • 36e Tang X.-J, Zhang Z, Dolbier WR. Jr. Chem. Eur. J. 2015; 21: 18961
    • 36f Zhang Z, Tang X, Dolbier WR. Jr. Org. Lett. 2015; 17: 4401
    • 36g Li C, Cao Y.-X, Wang R, Wang Y.-N, Lan Q, Wang X.-S. Nat. Commun. 2018; 9: 4951
    • 36h Ren L, Wang Q. ChemistrySelect 2018; 3: 709
    • 36i Yu X, Cai L, Bao M, Sun Q, Ma H, Yuan C, Xu W. Chem. Commun. 2020; 56: 1685
    • 36j Ma Y, Roy S, Kong X, Chen Y, Liu D, Hider RC. J. Med. Chem. 2012; 55: 2185
    • 36k Chen H, Yin J, Lin Y. Chem. Zvesti 2009; 63: 92
  • 37 Sumino S, Uno M, Fukuyama T, Ryu I, Matsuura M, Yamamoto A, Kishikawa Y. J. Org. Chem. 2017; 82: 5469
  • 38 Ikeda M, Matsuzawa T, Morita T, Hosoya T, Yoshida S. Chem. Eur. J. 2020; 26: 12333
  • 39 Sun Q, Yu X, Bao M, Liu M, Pan J, Zha Z, Cai L, Ma H, Yuan C, Qiu X, Xu W. Angew. Chem. Int. Ed. 2018; 57: 4035
    • 40a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 40b Boyer J, Arnoult E, Médebielle M, Guillemont J, Unge J, Jochmans D. J. Med. Chem. 2011; 54: 7974
    • 41a Yoshida M, Morinaga M, Iyoda M. J. Fluorine Chem. 1994; 68: 33
    • 41b Guidotti J, Metz F, Tordeux M, Wakselman C. Synlett 2004; 1759
    • 41c Gu J.-W, Guo W.-H, Zhang X. Org. Chem. Front. 2015; 2: 38
    • 41d Verhoog S, Pfeifer L, Khotavivattana T, Calderwood S, Collier T, Wheelhouse K, Tredwell M, Gouverneur V. Synlett 2015; 27: 25
    • 42a Wang H, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
    • 42b Chen K, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
    • 42c Luo Y.-C, Tong F.-F, Zhang Y, He C.-Y, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
  • 43 Vogt DB, Seath CP, Wang H, Jui NT. J. Am. Chem. Soc. 2019; 141: 13203
  • 44 Stephan DW. Acc. Chem. Res. 2015; 48: 306
  • 45 Caputo CB, Stephan DW. Organometallics 2012; 31: 27
  • 46 Mandal D, Gupta R, Young RD. J. Am. Chem. Soc. 2018; 140: 10682
    • 47a Mandal D, Gupta R, Jaiswal AK, Young RD. J. Am. Chem. Soc. 2020; 142: 2572
    • 47b Gupta R, Mandal D, Jaiswal AK, Young RD. Org. Lett. 2021; 23: 1915
  • 48 Weissman SA, Anderson NG. Org. Process Res. Dev. 2015; 19: 1605
    • 49a Janjetovic M, Ekebergh A, Träff AM, Hilmersson G. Org. Lett. 2016; 18: 2804
    • 49b Goh KK. K, Sinha A, Fraser C, Young RD. RSC Adv. 2016; 6: 42708
    • 50a Treder AP, Andruszkiewicz R, Zgoda W, Walkowiak A, Ford C, Hudson AL. Bioorg. Med. Chem. 2011; 19: 156
    • 50b Wang R, Gregg BT, Zhang W, Golden KC, Quinn JF, Cui P, Tymoshenko DO. Tetrahedron Lett. 2009; 50: 7070
  • 51 Liu H, Kondo S.-i, Takeda N, Unno M. Eur. J. Inorg. Chem. 2009; 1317