Synlett 2023; 34(01): 1-13
DOI: 10.1055/a-1912-3059
synpacts
Special Edition Thieme Chemistry Journals Awardees 2022

Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions of gem-Difluorinated Cyclopropanes

Yulei Zhu
,
Yaxin Zeng
,
Zhong-Tao Jiang
,
Ying Xia
This work was supported by the Thousand Young Talents Program of China (Grant No. 15-YINGXIA), the National Natural Science ­Foundation of China (Grant No. 22001180), and start-up funding from Sichuan University (Grant No. YJ201965).


Dedicated to Professor Jianbo Wang on the occasion of his 60th birthday

Abstract

As a special class of cyclopropanes, gem-difluorinated cyclopropanes have many fascinating properties as a result of the gem-difluoro substitution; thus, their reactions have received much attention from the synthetic chemistry community. Recently, gem-difluorinated cyclopropanes have gradually emerged as a type of novel and unique fluorinated allylic synthon in cross-coupling reactions for the synthesis of monofluoroalkenes. Herein, we briefly summarize recent advances in transition-metal-catalyzed reactions of gem-difluorinated cyclopropanes.

1 Introduction

2 Palladium-Catalyzed Reactions with Linear Selectivity

3 Palladium-Catalyzed Reactions with Branched Selectivity

4 Other Metal-Catalyzed Reactions

5 Conclusions



Publication History

Received: 24 June 2022

Accepted after revision: 28 July 2022

Accepted Manuscript online:
28 July 2022

Article published online:
21 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Preedy V. Fluorine: Chemistry, Analysis, Function and Effects . Royal Society of Chemistry; Cambridge: 2015
    • 1b Chambers RD. Fluorine in Organic Chemistry . Blackwell; Oxford: 2004
    • 1c Yamamoto H. Organofluorine Compounds: Chemistry and Application. Springer; New York: 2000
    • 1d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 2 Zeiger DN, Liebman JF. J. Mol. Struct. 2000; 556, 83
    • 3a Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley; Chichester: 2009
    • 3b Soloshonok VA, Mikami K, Yamazaki T, Welch JT, Honek JF. Current Fluoroorganic Chemistry: New Synthetic Directions, Technologies, Materials, and Biological Applications . American Chemical Society; Washington (DC): 2007
    • 3c Osada S, Sano S, Ueyama M, Chuman Y, Kodama H, Sakaguchi K. Bioorg. Med. Chem. 2010; 18: 605
    • 3d Oishi S, Kamitani H, Kodera Y, Watanabe K, Kobayashi K, Narumi T, Tomita K, Ohno H, Naito T, Kodama E, Matsuoka M, Fujii N. Org. Biomol. Chem. 2009; 7: 2872
    • 4a Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 4b Koh MJ, Nguyen TT, Zhang H, Schrock RR, Hoveyda AH. Nature 2016; 531: 459
    • 4c Guérin D, Dez I, Gaumont A.-C, Pannecoucke X, Couve-Bonnaire S. Org. Lett. 2016; 18: 3606
    • 4d Watanabe D, Koura M, Saito A, Yanai H, Nakamura Y, Okada M, Sato A, Taguchi TJ. Fluorine Chem. 2011; 132: 327
    • 4e Dutheuil G, Couve-Bonnaire S, Pannecoucke X. Angew. Chem. Int. Ed. 2007; 46: 1290
  • 5 Dolbier WR, Battiste MA. Chem. Rev. 2003; 103: 1071
  • 6 Boggs JE, Fan K. Acta Chem. Scand. A 1988; 42: 595
  • 7 Atkinson B. J. Chem. Soc. 1952; 2684
  • 8 Tarrant P, Lovelace AM, Lilyquist MR. J. Am. Chem. Soc. 1955; 77: 2783
  • 9 Birchall JM, Cross GW, Haszeldine RN. Proc. Chem. Soc. 1960; 81
    • 10a Cahard D, Ma J.-A. Emerging Fluorinated Motifs: Synthesis, Properties, and Applications. Wiley; Chichester: 2020
    • 10b Fedorynski M. Chem. Rev. 2003; 103: 1099
    • 10c Wang F, Luo T, Hu J, Wang Y, Krishnan HS, Jog PV, Ganesh SK, Prakash GK. S, Olah GA. Angew. Chem. Int. Ed. 2011; 50: 7153
    • 10d Song X, Xu C, Wang M. Tetrahedron Lett. 2017; 58: 1806
    • 10e Adekenova KS, Wyatt PB, Adekenov SM. Beilstein J. Org. Chem. 2021; 17: 245
  • 11 Isogai K, Nishizawa N, Saito T, Sakai J.-i. Bull. Chem. Soc. Jpn. 1983; 56: 1555
    • 12a Itoh T, Munemori D, Narita K, Nokami T. Org. Lett. 2014; 16: 2638
    • 12b Goto T, Kawasaki-Takasuka T, Yamazaki T. J. Org. Chem. 2019; 84: 9509
    • 12c Xiao J.-C, Yang T.-P, Lin J.-H, Chen Q.-Y. Chem. Commun. 2013; 49: 9833
    • 12d Sugiishi T, Matsumura C, Amii H. Org. Biomol. Chem. 2020; 18: 3459
    • 12e Takenaka H, Masuhara Y, Narita K, Nokami T, Itoh T. Org. Biomol. Chem. 2018; 16: 6106
    • 12f Liu H, Li Y, Wang D.-X, Sun M.-M, Feng C. Org. Lett. 2020; 22: 8681
    • 12g Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL. Science 2010; 329: 1057
    • 12h Liu H, Tian L, Wang H, Li Z.-Q, Zhang C, Xue F, Feng C. Chem. Sci. 2022; 13: 2686
    • 12i Song X, Xu C, Du D, Zhao Z, Zhu D, Wang M. Org. Lett. 2017; 19, 6542
    • 13a Hartwig J. Organotransition Metal Chemistry . University Science Books; Sausalito: 2010
    • 13b Tsuji J. Palladium Reagents and Catalysts. New Perspectives for the 21st Century. Wiley; Chichester: 2004
    • 13c Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 14 Xu J, Ahmed E.-A, Xiao B, Lu Q.-Q, Wang Y.-L, Yu C.-G, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 8231
  • 15 Ahmed E.-AM. A, Suliman AM. Y, Gong T.-J, Fu Y. Org. Lett. 2019; 21: 5645
  • 16 Ahmed E.-AM. A, Suliman AM. Y, Gong T.-J, Fu Y. Org. Lett. 2020; 22: 1414
  • 17 Suliman AM. Y, Ahmed E.-AM. A, Gong T.-J, Fu Y. Org. Lett. 2021; 23: 3259
  • 18 Suliman AM. Y, Ahmed E.-AM. A, Gong T.-J, Fu Y. Chem. Commun. 2021; 57: 6400
  • 19 Ni J, Nishonov B, Pardaev A, Zhang AJ. Org. Chem. 2019; 84: 13646
  • 20 Fu Z, Zhu J, Guo S, Lin A. Chem. Commun. 2021; 57: 1262
  • 21 Zhou P.-X, Yang X, Wang J, Ge C, Feng W, Liang Y.-M, Zhang Y. Org. Lett. 2021; 23: 4920
  • 22 Xiong B, Chen X, Liu J, Zhang X, Xia Y, Lian Z. ACS Catal. 2021; 11: 11960
  • 23 Yuan W, Li X, Qi Z, Li X. Org. Lett. 2022; 24: 2093
  • 24 Lv L, Li C.-J. Angew. Chem. Int. Ed. 2021; 60: 13098
  • 25 Lv L, Qian T, Ma Y, Huang S, Yan X, Li Z. Chem. Sci. 2021; 12: 15511
  • 26 Lv L, Qian H, Crowell AB, Chen S, Li Z. ACS Catal. 2022; 12: 6495
  • 27 Wu L, Wang M, Liang Y, Shi Z. Chin. J. Chem. 2022; 40: 2345
  • 28 Wenz J, Rettenmeier CA, Wadepohl H, Gade LH. Chem. Commun. 2016; 52: 202
  • 29 Ai Y, Yang H, Duan C, Li X, Yu S. Org. Lett. 2022; 24: 5051
  • 30 Jiang Z.-T, Huang J, Zeng Y, Hu F, Xia Y. Angew. Chem. Int. Ed. 2021; 60: 10626
  • 31 Jiang Z.-T, Zeng Y, Xia Y. Synlett 2021; 17, 1675
  • 32 Zeng Y, Gao H, Zhu Y, Jiang Z.-T, Lu G, Xia Y. ACS Catal. 2022; 12: 8857