Synlett 2023; 34(07): 858-862
DOI: 10.1055/a-1912-2378
cluster
Chemical Synthesis and Catalysis in India

Asymmetric Total Syntheses of (–)-Dihydromaritidine and (–)-Oxomaritidine

Abhinay Yadav
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal–462 066, Madhya Pradesh, India
,
Satyajit Majumder
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal–462 066, Madhya Pradesh, India
,
Mrinal Kanti Das
b   Department of Chemistry, Karimpur Pannadevi College, University of Kalyani, Nadia–741 152, West Bengal, India
,
Ayan Mondal
c   Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia–741 246, West Bengal, India
,
Alakesh Bisai
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal–462 066, Madhya Pradesh, India
c   Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia–741 246, West Bengal, India
› Author Affiliations
Financial support from the SERB, DST (CRG/2019/000113, and STR/2020/000066) and CSIR [02(0403)/21/EMR-II], Government of India, is gratefully acknowledged.


Abstract

A concise catalytic asymmetric approach to naturally occurring Amaryllidaceae alkaloids sharing a 5,10b-ethanophenanthridine skeleton [(–)-oxomaritidine, (–)-dihydromaritidine, (–)-maritidine, and (–)-epi-maritidine] has been envisioned. The key intermediate in this strategy was obtained by a Pd(0)-catalyzed decarboxylative allylation of a 2-arylcyclohexan-1-one-derived allylenol carbonate (87%, 96% ee).

Supporting Information



Publication History

Received: 19 June 2022

Accepted after revision: 28 July 2022

Accepted Manuscript online:
28 July 2022

Article published online:
19 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Jin Z, Yao G. Nat. Prod. Rep. 2019; 36: 1462 ; and references cited therein
  • 2 Ding Y, Qu D, Zhang K.-M, Cang X.-X, Kou Z.-N, Xiao W, Zhu J.-B. J. Asian Nat. Prod. Res. 2016; 19: 53
    • 3a Refaat J, Kamel MS, Ramadan MA, Ali AA. Int. J. Pharm. Sci. Res. 2013; 4: 1239
    • 3b Jin Z. Nat. Prod. Rep. 2016; 33: 1318
    • 4a Zhang Y, Shen S, Fang H, Xu T. Org. Lett. 2020; 22: 1244
    • 4b Williams P, Sorribas A, Howes M.-JR. Nat. Prod. Rep. 2011; 28: 48 ; and references cited therein
    • 5a Zhang Y, Shen S, Fang H, Xu T. Org. Lett. 2020; 22: 1244
    • 5b Kogure N, Katsuta N, Kitajima M, Takayama H. Chem. Pharm. Bull. 2011; 59: 1545
    • 6a Bru C, Thal C, Guillou C. Org. Lett. 2003; 5: 1845
    • 6b Roe C, Stephenson GR. Org. Lett. 2008; 10: 189
    • 6c Pandey G, Gupta NR, Pimpalpalle TM. Org. Lett. 2009; 11: 2547 ; and references cited therein
    • 7a Wang W, Dai J, Yang Q, Deng Y.-H, Peng F, Sao Z. Org. Lett. 2021; 23: 920 ; and references cited therein
    • 7b Verma P, Chandra A, Pandey G. J. Org. Chem. 2018; 83: 9968
    • 8a Tomioka K, Koga K, Yamada S. Chem. Pharm. Bull. 1977; 25: 2681
    • 8b Zuo X.-D, Guo S.-M, Yang R, Xie J.-H, Zhou Q.-L. Chem. Sci. 2017; 8: 6202
    • 9a Boit H. -G. Chem. Ber. 1956; 89: 1129
    • 9b Feinstein AI, Wildman WC. J. Org. Chem. 1976; 41: 2447
    • 10a Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. Christoffers J, Baro A. Wiley-VCH; Weinheim: 2005
    • 10b Das JP, Marek I. Chem. Commun. 2011; 47: 4593
    • 11a Trost BM, Fandrick DR. Aldrichimica Acta 2007; 40: 59
    • 11b Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
    • 11c Ghosh S, Chaudhuri S, Bisai A. Chem. Eur. J. 2015; 21: 17479
    • 12a Trost BM, Schroeder GM, Kristensen J. Angew. Chem. Int. Ed. 2002; 41: 3492
    • 12b Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
    • 12c Park J, Kim YK, Kim G. Bull. Korean Chem. Soc. 2011; 32: 3141
  • 13 Pupo G, Properzi R, List B. Angew. Chem. Int. Ed. 2016; 55: 6099
  • 14 Das MK, Kumar N, Bisai A. Org. Lett. 2018; 20: 4421

    • For the use of [3,3]-sigmatropic rearrangements in total syntheses of Amaryllidaceae alkaloids from our group, see:
    • 15a Das MK, De S, Subhashish S, Bisai A. Org. Biomol. Chem. 2015; 13: 3585
    • 15b Majumder S, Yadav A, Pal S, Khatua A, Bisai A. J. Org. Chem. 2022; 87: 7786
    • 16a Ito Y, Hirao T, Saegusa T. J. Org. Chem. 1978; 43: 1011
    • 16b Bisai A, West SP, Sarpong R. J. Am. Chem. Soc. 2008; 130: 7222
  • 17 The relative stereochemistry of epoxyketone (–)-14 was assigned by analogy with a report in the literature; see ref. 14.
  • 18 Energy minimization of (–)-deoxymaritidine (24) was performed by an MM2 calculation; ChemBio3D Ultra 14. PerkinElmer Informatics; Waltham (MA, USA): 2022