Synthesis 2022; 54(23): 5245-5252
DOI: 10.1055/a-1899-5563
paper

Selectfluor-Mediated Oxidative Dehydrogenation of Hydrazines: A Process for the Synthesis of Azo Compounds

Yulei Zhao
a   Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
,
Shuai Li
a   Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
,
Jinjie Cui
a   Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
,
Huimin Wang
a   Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
,
Xin Kang
a   Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
,
Yan Wang
b   Hospital of University, Qufu Normal University, Qufu 273165, P. R. of China
,
Laijin Tian
a   Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
› Author Affiliations
We thank the Natural Science Foundation of Shandong Province (ZR2021MB136 and ZR2018BB026), College Students Innovation and Entrepreneurship Training Project of China (202110446051), and the Doctoral Start-Up Scientific Research Foundation of Qufu Normal University.


Abstract

A facile method to synthesize azo compounds from hydrazine derivatives is developed. This represents the unprecedented example of Selectfluor-mediated oxidative dehydrogenation of hydrazine derivatives. The reaction might proceed through N-fluorination and elimination processes. This protocol exhibits key features including simple operation, mild conditions, good functional group tolerance, and high efficiency. Moreover, the advantage is also highlighted by the conversion of a sulfonyl-substituted azo compound to furnish acetanilide in excellent yield under 4 W blue LED irradiation.

Supporting Information



Publication History

Received: 09 June 2022

Accepted after revision: 13 July 2022

Accepted Manuscript online:
13 July 2022

Article published online:
01 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Dong LQ, Feng YY, Wang L, Feng W. Chem. Soc. Rev 2018; 47: 7339
    • 1b Bandara HM. D, Burdette SC. Chem. Soc. Rev. 2012; 41: 1809
    • 1c Merino E. Chem. Soc. Rev. 2011; 40: 3835
    • 1d Wu J, Liu Z, Yao Y, Lin S. Chin. J. Org. Chem. 2019; 39: 2952
    • 1e Hunger K. Industrial Dyes: Chemistry, Properties, Applications. Wiley-VCH; Weinheim: 2003
    • 1f Kumar GS, Neckers DC. Chem. Rev. 1989; 89: 1915
    • 2a Zang YP, Stone I, Inkpen MS, Ng F, Lambert TH, Nuckolls C, Steigerwald ML, Roy X, Venkataraman L. Angew. Chem. Int. Ed. 2019; 58: 16008
    • 2b Dutta B, Biswas S, Sharma V, Savage NO, Alpay SP, Suib SL. Angew. Chem. Int. Ed. 2016; 55: 2171
    • 2c Takeda Y, Okumura S, Minakata S. Angew. Chem. Int. Ed. 2012; 51: 7804
    • 2d Saha A, Payra S, Selvaratnam B, Bhattacharya S, Pal S, Koodali RT, Banerjee S. ACS Sustainable Chem. Eng. 2018; 6: 11345
    • 2e Georgiádes Á, Ötvös SB, Fülöp F. ACS Sustainable Chem. Eng. 2015; 3: 3388
    • 2f Paris E, Bigi F, Cauzzi D, Maggi R, Maestri G. Green Chem. 2018; 20: 382
    • 2g Cai S, Rong H, Yu X, Liu X, Wang D, He W, Li Y. ACS Catal. 2013; 3: 478
    • 3a Mondal B, Mukherjee PS. J. Am. Chem. Soc. 2018; 140: 12592
    • 3b Liu X, Li HQ, Ye S, Liu YM, He HY, Cao Y. Angew. Chem. Int. Ed. 2014; 53: 7624
    • 3c Zhang YF, Mellah M. ACS Catal. 2017; 7: 8480
  • 4 Mills C. J. Chem. Soc. Trans. 1895; 67: 925
    • 5a Feng G, Zhu M, Liu L, Li C. Green Chem. 2019; 21: 1769
    • 5b Haghbeen K, Tan EW. J. Org. Chem. 1998; 63: 4503

      For transition metal catalysis, see:
    • 6a Kim MH, Kim J. J. Org. Chem. 2018; 83: 1673
    • 6b Hashimoto T, Hirose D, Taniguchi T. Adv. Synth. Catal. 2015; 357: 3346
    • 6c Donck S, Gravel E, Li A, Prakash P, Shah N, Leroy J, Li H, Namboothiri IN. N, Doris E. Catal. Sci. Technol. 2015; 5: 4542
    • 6d Gao W, He Z, Qian Y, Zhao J, Huang Y. Chem. Sci. 2012; 3: 883
    • 6e Drug E, Gozin M. J. Am. Chem. Soc. 2007; 129: 13784
    • 6f Kim SS. B, Hommer RB, Cannon RD. Bull. Korean Chem. Soc. 2006; 27: 255
    • 6g Trischler F. J. Therm. Anal. 1979; 16: 119
    • 6h Blackadder DA, Hinshelwood C. J. Chem. Soc. 1957; 2904

      For organic-molecular catalysis, see:
    • 7a Wang L, Ishida A, Hashidoko Y, Hashimoto M. Angew. Chem. Int. Ed. 2017; 56: 870
    • 7b Jo G, Kim MH, Kim J. Org. Chem. Front. 2020; 7: 834
    • 7c Lv H, Laishram RD, Yang Y, Li J, Xu D, Zhan Y, Luo Y, Su Z, More S, Fan B. Org. Biomol. Chem. 2020; 18: 3471
    • 7d Wang Z.-Q, Yu J.-X, Bai S.-Q, Liu B, Wang C.-Y, Li J.-H. ACS Omega 2020; 5: 28856
  • 8 For electrocatalysis, see: Du K.-S, Huang J.-M. Green Chem. 2019; 21: 1680

    • For photocatalysis, see:
    • 9a Wang X, Wang X, Xia C, Wu L. Green Chem. 2019; 21: 4189
    • 9b Lv H, Laishram RD, Li J, Zhou Y, Xu D, More S, Dai Y, Fan B. Green Chem. 2019; 21: 4055
    • 9c Sahoo MK, Saravanakumar K, Jaiswal G, Balaraman E. ACS Catal. 2018; 8: 7727
  • 10 Bai L.-B, Gao X.-M, Zhang X, Sun F.-F, Ma N. Tetrahedron Lett. 2014; 55: 4545
  • 11 Malekafzali A, Malinovska K, Patureau FW. New J. Chem. 2017; 41: 6981
  • 12 Zhao W, Zeng X, Huang L, Qiu S, Xie J, Yu H, Wei Y. Chem. Commun. 2021; 57: 7677
    • 13a Ref 6b
    • 13b Ref. 7b
    • 13c Ref. 6a
    • 13d Liu J.-B, Yan H, Chen H.-X, Luo Y, Weng J, Lu G. Chem. Commun. 2013; 49: 5268
    • 13e Ahern MF, Leopold A, Beadle JR, Gokel GW. J. Am. Chem. Soc. 1982; 104: 548
    • 14a LeFevre GN, Crawford RJ. J. Am. Chem. Soc. 1986; 108: 1019
    • 14b Molina CL, Chow CP, Shea KJ. J. Org. Chem. 2007; 72: 6816
    • 14c Cohen SG, Nicholson J. J. Org. Chem. 1965; 30: 1162
    • 14d Tirapegui C, Acevedo-Fuentes W, Dahech P, Torrent C, Barrias P, Rojas-Poblete M, Mascayano C. Bioorg. Med. Chem. Lett. 2017; 27: 1649
  • 15 Yang K, Song M, Ali AI. M, Mudassir SM, Ge H. Chem. Asian J. 2020; 15: 729
    • 16a Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 16b Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 16c Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
  • 17 Zhao Y, Guo X, Li S, Fan Y, Sun X, Tian L. Org. Lett. 2021; 23: 9140
    • 18a Zhao Y, Guo X, Ding X, Zhou Z, Li M, Feng N, Gao B, Lu X, Liu Y, You J. Org. Lett. 2020; 22: 8326
    • 18b Zhao Y, Li S, Fan Y, Wang H, Kang X, Ji Z, Tian L. J. Org. Chem. 2022; 87: 6418
    • 18c Zhao Y, Guo X, Zhang R, Li S, Chen T, Sun X. J. Org. Chem. 2021; 86: 15568
    • 18d Zhao Y, Liu X, Zheng L, Du Y, Shi X, Liu Y, Yan Z, You J, Jiang Y. J. Org. Chem. 2020; 85: 912
    • 18e Zhao Y, Guo X, Si Z, Hu Y, Sun Y, Liu Y, Ji Z, You J. J. Org. Chem. 2020; 85: 13347
    • 18f Zhao Y, Zhang Z, Liu X, Wang Z, Cao Z, Tian L, Yue M, You J. J. Org. Chem. 2019; 84: 1379
  • 19 Crespi S, Protti S, Fagnoni M. J. Org. Chem. 2016; 81: 9612
  • 20 Chawla R, Jaiswal S, Dutta PK, Yadav LD. S. Org. Biomol. Chem. 2021; 19: 6487
  • 21 Kisseljova K, Tšubrik O, Sillard R, Mäeorg S, Mäeorg U. Org. Lett. 2006; 8: 43
    • 22a Jiang X, Yang J, Zhang F, Yu P, Yi P, Sun Y, Wang Y. Org. Lett. 2016; 18: 3154
    • 22b Cao Y, Zhou D, Ma Y. Can. J. Chem. 2019; 97: 37
    • 23a Perugini MA, Abbott BM, Soares da Costa TP. Patent WO 2019/241850, 2019
    • 23b Zhou H.-P, Liu J.-B, Yuan J.-J, Peng Y.-Y. RSC Adv. 2014; 4: 25576
    • 23c Liu J.-B, Nie L, Yan H, Jiang L.-H, Weng J, Lu G. Org. Biomol. Chem. 2013; 11: 8014
    • 23d Ref 8
    • 23e Xie Y, Guo S, Wu L, Xia C, Huang H. Angew. Chem. Int. Ed. 2015; 54: 5900
    • 24a Xu Y, Yang X, Fang H. J. Org. Chem. 2018; 83: 12831
    • 24b Yousif D, Monti M, Papagni A, Vaghi L. Tetrahedron Lett. 2020; 61: 152511
    • 24c Blank L, Fagnoni M, Protti S, Rueping M. Synthesis 2019; 51: 1243
    • 24d Lian C, Yue G, Mao J, Liu D, Ding Y, Liu Z, Qiu D, Zhao X, Lu K, Fagnoni M, Protti S. Org. Lett. 2019; 21: 5187
    • 24e Liu J.-B, Chen F.-J, Liu E, Li J.-H, Qiu G. New J. Chem. 2015; 39: 7773
  • 25 Zhang J.-Q, Huang G.-B, Weng J, Lu G, Chan AS. C. Org. Biomol. Chem. 2015; 13: 2055
  • 26 Liu L, Wang Z, Fu X, Yan C.-H. Org. Lett. 2012; 14: 5692