Synthesis 2022; 54(20): 4551-4560
DOI: 10.1055/a-1884-6988
paper

One-Pot Synthesis of Diaryl Sulfonamides using an Iron- and Copper-Catalyzed Aryl C–H Amidation Process

Lachlan J. N. Waddell
a   School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
,
Martyn C. Henry
a   School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
,
Mohamed A. B. Mostafa
a   School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
,
a   School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
› Author Affiliations
We are grateful for funding from the Engineering and Physical Sciences­ Research Council (EPSRC) (Ph.D. studentships to L.J.N.W., EP/T517896/1 and M.C.H., EP/M508056/1). Financial support from the Ministry of Higher Education and Scientific Research, the University of Benghazi, Libya (studentship to M.A.B.M.) and the University of Glasgow is gratefully acknowledged.


Abstract

A one-pot, two-stage synthesis of diaryl sulfonamides using sequential iron and copper catalysis is developed. Regioselective para-iodination of activated arenes by the super Lewis acid, iron triflimide and N-iodosuccinimide (NIS), is followed by a copper(I)-catalyzed N-arylation reaction. The process is found to be applicable for the coupling of a range of anisoles, anilines and acetanilides with primary sulfonamides and is used for the one-pot synthesis of biologically important compounds.

Supporting Information



Publication History

Received: 01 June 2022

Accepted after revision: 24 June 2022

Accepted Manuscript online:
24 June 2022

Article published online:
27 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Drews J. Science 2000; 287: 1960
    • 1b Smith DA, Jones RM. Curr. Opin. Drug. Discovery Dev. 2008; 11: 72
    • 1c Bentley R. J. Ind. Microbiol. Biotechnol. 2009; 36: 775
    • 2a Vicente-Blázquez A, González M, Álvarez R, del Mazo S, Medarde M, Peláez R. Med. Res. Rev. 2019; 39: 775
    • 2b Elgemeie GH, Azzam RA, Elsayed RE. Med. Chem. Res. 2019; 28: 1099
    • 2c El-Gaby MS. A, Ammar YA, El-Qaliei MI. H, Ali AM, Hussein MF, Faraghally FA. Egypt J. Chem. 2020; 63: 5289
  • 3 Sparks SM, Chen G, Collins JL, Danger D, Dock ST, Jayawickreme C, Jenkinson S, Laudeman C, Leesnitzer MA, Liang X, Maloney P, McCoy DC, Moncol D, Rash V, Rimele T, Vulimiri P, Way JM, Ross S. Bioorg. Med. Chem. Lett. 2014; 24: 3100
    • 4a Li Q, Sham H, Woods KW, Steiner BA, Gwaltney SL. II, Barr KJ, Imade HM, Rosenberg S. US Patent 6521658, 2003
    • 4b González M, Ovejero-Sánchez M, Vicente-Blázquez A, Medarde M, González-Sarmiento R, Peláez R. J. Enzyme Inhib. Med. Chem. 2021; 36: 1029
  • 5 Medina JC, Shan B, Beckmann H, Farrell RP, Clark DL, Learned RM, Roche D, Li A, Baichwal V, Case C, Baeuerle PA, Rosen T, Jaen JC. Bioorg. Med. Chem. Lett. 1998; 8: 2653
    • 6a Fish PV, Filippakopoulos P, Bish G, Brennan PE, Bunnage ME, Cook AS, Federov O, Gerstenberger BS, Jones H, Knapp S, Marsden B, Nocka K, Owen DR, Philpott M, Picaud S, Primiano MJ, Ralph MJ, Sciammetta N, Trzupek JD. J. Med. Chem. 2012; 55: 9831
    • 6b Fish PV, Cook AS, Phillips C, Bent AF, Mills JE. J, Sciammetta N. WO2013027168 A1, 2013
  • 7 For a review, see: Kolaczek A, Fusiarz I, Lawecka J, Branowska D. CHEMIK 2014; 68: 620

    • For example, see:
    • 8a Kim J.-G, Jang DO. Synlett 2007; 2501
    • 8b Bahrami K, Khodaei MM, Soheilizad M. J. Org. Chem. 2009; 74: 9287
    • 8c Zhang W, Xie J, Rao B, Luo M. J. Org. Chem. 2015; 80: 3504
    • 8d Flegeau EF, Harrison JM, Willis MC. Synlett 2016; 27: 101
    • 8e Mukherjee P, Woroch CP, Cleary L, Rusznak M, Franzese RW, Reese MR, Tucker JW, Humphrey JM, Etuk SM, Kwan SC, Ende CW, Ball ND. Org. Lett. 2018; 20: 3943
    • 8f Chen Y, Murray RD, Davies AT, Willis MC. J. Am. Chem. Soc. 2018; 140: 8781
    • 8g Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Org. Lett. 2020; 22: 1841
  • 9 Rosen BR, Ruble JC, Beauchamp TJ, Navarro A. Org. Lett. 2011; 13: 2564
  • 10 Shekhar S, Dunn TB, Kotecki BJ, Montavon DK, Cullen SC. J. Org. Chem. 2011; 76: 4552
    • 11a Lam PY. S, Vincent G, Clark CG, Deudon S, Jadhav PK. Tetrahedron Lett. 2001; 42: 3415
    • 11b Deng W, Liu L, Zhang C, Liu M, Guo Q.-X. Tetrahedron Lett. 2005; 46: 7295
    • 12a Xiao B, Gong T.-J, Xu J, Liu Z.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 1466
    • 12b John A, Nicholas KM. J. Org. Chem. 2011; 76: 4158
    • 12c Zhao H, Shang Y, Su W. Org. Lett. 2013; 15: 5106
    • 12d Shang M, Sun S.-Z, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 3554
    • 12e Maiden TM. M, Swanson S, Procopiou PA, Harrity JP. A. J. Org. Chem. 2016; 81: 10641
    • 12f Song C, Wang T, Yu T, Cui D.-M, Zhang C. Org. Biomol. Chem. 2017; 15: 7212
    • 12g Zhang W, Yang D, Wang W, Wang S, Zhao H. Eur. J. Org. Chem. 2018; 2071
    • 12h Liu L, Wang N, Dai C, Han Y, Yang S, Huang Z, Zhao Y. Eur. J. Org. Chem. 2019; 7857
  • 13 Racys DT, Warrilow CE, Pimlott SL, Sutherland A. Org. Lett. 2015; 17: 4782
    • 14a Antoniotti S, Dalla V, Duñach E. Angew. Chem. Int. Ed. 2010; 49: 7860
    • 14b Earle MJ, Hakala U, McAuley BJ, Nieuwenhuyzen M, Ramani A, Seddon KR. Chem. Commun. 2004; 1368
  • 15 Mostafa MA. B, Bowley RM, Racys DT, Henry MC, Sutherland A. J. Org. Chem. 2017; 82: 7529
    • 16a Mostafa MA. B, Calder ED. D, Racys DT, Sutherland A. Chem. Eur. J. 2017; 23: 1044
    • 16b Henry MC, Senn HM, Sutherland A. J. Org. Chem. 2019; 84: 346
    • 16c Henry MC, Sutherland A. Org. Lett. 2020; 22: 2766

      For reviews of copper-catalyzed aryl amination, see:
    • 17a Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
    • 17b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 17c Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 17d Okano K, Tokuyama H, Fukuyama T. Chem. Commun. 2014; 50: 13650
  • 18 Racys DT, Sharif SA. I, Pimlott SL, Sutherland A. J. Org. Chem. 2016; 81: 772
  • 19 It should be noted that in a previous study (see reference 16b), we performed DFT calculations using Fukui functions, which provided a molecular orbital rationale for the high para regioselectivity observed for iron triflimide catalyzed halogenation of arenes.
  • 20 Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
  • 21 As previously reported (see references 13, 15 and 16), electron-rich arenes are required for the iron(III)-catalyzed halogenation step. Electron-deficient arenes are not substrates for this transformation.
  • 22 Xu F, Zhao Y, Zhou H, Li C, Zhang X, Hou T, Qu L, Wei L, Wang J, Liu Y, Liang X. Bioorg. Med. Chem. Lett. 2020; 30: 127650
  • 23 Antilla JC, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 11684
  • 24 Nasrollahzadeh M, Ehsani A, Maham M. Synlett 2014; 25: 505
  • 25 Yang K, Ke M, Lin Y, Song Q. Green Chem. 2015; 17: 1395
  • 26 Kato T, Okamoto I, Tanatani A, Hatano T, Uchiyama M, Kagechika H, Masu H, Katagiri K, Tominaga M, Yamaguchi K, Azumaya I. Org. Lett. 2006; 8: 5017
  • 27 Nasrollahzadeh M, Rostami-Vartooni A, Ehsani A, Moghadam M. J. Mol. Catal. A: Chem. 2014; 387: 123
  • 28 Pan C, Cheng J, Wu H, Ding J, Liu M. Synth. Commun. 2009; 39: 2082
  • 29 Lawrence HR, Kazi A, Luo Y, Kendig R, Ge Y, Jain S, Daniel K, Santiago D, Guida WC, Sebti SM. Bioorg. Med. Chem. 2010; 18: 5576
  • 30 Arcoria A, Maccarone E, Musumarra G, Tomaselli GA. J. Org. Chem. 1973; 38: 2457
  • 31 Rahaim RJ. Jr, Maleczka RE. Jr. Synthesis 2006; 3316
  • 32 Deruer E, Coulibali S, Boukercha S, Canesi S. J. Org. Chem. 2017; 82: 11884
  • 33 Yu C, Liu B, Hu L. J. Org. Chem. 2001; 66: 919
  • 34 Ouyang B, Liu D, Xia K, Zheng Y, Mei H, Qiu G. Synlett 2018; 29: 111
  • 35 Jiang ZY, Xu L, Lu MC, Chen ZY, Yuan ZW, Xu XL, Guo XK, Zhang XJ, Sun HP, You QD. J. Med. Chem. 2015; 58: 6410