Synthesis 2022; 54(20): 4481-4494
DOI: 10.1055/a-1883-1357
paper

Carbon Chain Rupture: Base-Induced Radical C–C Bond Cleavage of Alkylbenzimidazoles

Xuegang Fu
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Dongyang Guo
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Yuting Yan
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Timotius Marselo
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Mingyu Zhang
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Zhenghan Zhang
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Siying Li
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
,
Jianhui Huang
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, P. R. of China
› Author Affiliations
This work was funded by the National Natural Science Foundation of China (Grant Nos. 21672159, 21871207).


Abstract

A base-mediated aerobic oxidation of alkylbenzimidazoles for the preparation of carboxylic acids is described. A number of aliphatic carboxylic acids have been prepared in good to excellent yields via a C–C bond rupture process. Preliminary mechanistic studies suggest the reaction undergoes a radical pathway initiated by strong bases such as potassium amide. This type of transformation provides an alternative strategy for the access of important carboxylic acid moieties.

Supporting Information



Publication History

Received: 03 April 2022

Accepted after revision: 23 June 2022

Accepted Manuscript online:
23 June 2022

Article published online:
27 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Lin R, Chen F, Jiao N. Org. Lett. 2012; 14: 4158
    • 2b Liu H, Dong C, Zhang Z, Wu P, Jiang X. Angew. Chem. Int. Ed. 2012; 51: 12570
    • 2c Shen T, Zhang Y, Liang YF, Jiao N. J. Am. Chem. Soc. 2016; 138: 13147
    • 2d Li LH, Niu ZJ, Li YX, Liang YM. Chem. Commun. 2018; 54: 11148
    • 2e Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
    • 2f Zhang Y, Jermaks J, MacMillan SN, Lambert TH. ACS Catal. 2019; 9: 9259
    • 2g Dai P.-F, Ning X.-S, Wang H, Cui X.-C, Liu J, Qu J.-P, Kang Y.-B. Angew. Chem. Int. Ed. 2019; 58: 5392
    • 2h Xia A, Qi X, Mao X, Wu X, Yang X, Zhang R, Xiang Z, Lian Z, Chen Y, Yang S. Org. Lett. 2019; 21: 3028
    • 2i Subaramanian M, Ramar PM, Rana J, Gupta VK, Balaraman E. Chem. Commun. 2020; 56: 8143
    • 3a Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 3b Liang Y.-F, Jiao N. Acc. Chem. Res. 2017; 50: 1640
    • 3c Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 3d Xu P, Li W, Xie J, Zhu C. Acc. Chem. Res. 2018; 51: 484
    • 4a Sibi MP, Porter NA. Acc. Chem. Res. 1998; 32: 163
    • 4b Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
    • 5a Birch AJ. J. Chem. Soc. 1944; 430
    • 5b Ashby EC, Goel AB. J. Am. Chem. Soc. 1981; 103: 4983
    • 5c Ashby EC. Acc. Chem. Res. 1988; 21: 414
    • 5d Ashby EC, Goel AB, DePriest RN. J. Org. Chem. 1981; 46: 2429
    • 5e Ashby EC, Goel AB, DePriest RN. J. Am. Chem. Soc. 1980; 102: 7779
    • 5f Ashby EC, Argyropoulos JN. J. Org. Chem. 1986; 51: 3593
    • 5g Ashby EC, Argyropoulos JN, Meyer GR, Goel AB. J. Am. Chem. Soc. 1982; 104: 6788
    • 6a Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. Nat. Chem. 2010; 2: 1044
    • 6b Shirakawa E, Itoh K, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 6c Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 7a Ye D, Liu Z, Chen H, Sessler JL, Lei C. Org. Lett. 2019; 21: 6888
    • 7b Chen Z.-Y, Liang H.-J, Chen R.-X, Chen L, Tang X.-Z, Yan M, Zhang X.-J. Adv. Synth. Catal. 2019; 361: 3324
    • 7c Guo L, Liu F, Wang L, Yuan H, Feng L, Kürti L, Gao H. Org. Lett. 2019; 21: 2894
  • 8 Yi H, Jutand A, Lei A. Chem. Commun. 2015; 51: 545
  • 9 Kljajic M, Puschnig JG, Weber H, Breinbauer R. Org. Lett. 2017; 19: 126
  • 10 Murakami R, Iwai T, Sawamura M. Synlett 2016; 27: 1187
  • 11 Largeron M, Deschamps P, Hammad K, Fleury MB. Green Chem. 2020; 22: 1894
  • 12 Baars H, Beyer A, Kohlhepp SV, Bolm C. Org. Lett. 2014; 16: 536
  • 13 Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587
  • 14 Cheng HG, Pu M, Kundu G, Schoenebeck F. Org. Lett. 2020; 22: 331
  • 15 Pozharskii AF, Nanavyan IM, Kuz’menko VV, Vhernyshev AI, Orlov YuV. Chem. Heterocycl. Compd. 1989; 25: 1241
  • 16 Kapinos LE, Holý A, Günter J, Sigel H. Inorg. Chem. 2001; 40: 2500
  • 17 Van Den Berge E, Robiette R. J. Org. Chem. 2013; 78: 12220
  • 18 Kanitz NE, Lindel TZ. Z. Naturforsch., B: Chem. Sci. 2016; 71: 1287
  • 19 Gillespie JE, Morrill C, Phipps RJ. J. Am. Chem. Soc. 2021; 143: 9355
  • 20 Bounaud PY, Smith CR, Jefferson EA. WO200851808, 2008
  • 21 Tran G, Confair D, Hesp KD, Mascitti V, Ellman JA. J. Org. Chem. 2017; 82: 9243
  • 22 Jung HY, Chang S, Hong S. Org. Lett. 2019; 21: 7099
  • 23 Gaydou M, Moragas T, Juliá-Hernández F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
  • 24 Dai PF, Qu JP, Kang YB. Org. Lett. 2019; 21: 1393
  • 25 Poigny S, Guyot M, Samadi M. J. Chem. Soc., Perkin Trans. 1 1997; 2175
  • 26 Ma C, Zhao C.-Q, Xu X.-T, Li Z.-M, Wang X.-Y, Zhang K, Mei T.-S. Org. Lett. 2019; 21: 2464
  • 27 Santilli C, Makarov IS, Fristrup P, Madsen R. J. Org. Chem. 2016; 81: 9931
  • 28 Ren W, Chu J, Sun F, Shi Y. Org. Lett. 2019; 21: 5967
  • 29 Lee W.-C, Wang C.-H, Lin Y.-H, Shih W.-C, Ong T.-G. Org. Lett. 2013; 15: 5358
  • 30 Flinker M, Yin H, Juhl RW, Eikeland EZ, Overgaard J, Nielsen DU, Skrydstrup T. Angew. Chem. Int. Ed. 2017; 56: 15910
  • 31 Hurst TE, Deichert JA, Kapeniak L, Lee R, Harris J, Jessop PG, Snieckus V. Org. Lett. 2019; 21: 3882
  • 32 Frutos RP, Gallou I, Reeves D, Xu YB, Krishnamurthy D, Senanayake CH. Tetrahedron Lett. 2005; 46: 8369