Synlett 2023; 34(02): 124-132
DOI: 10.1055/a-1879-2521
cluster
Special Edition Thieme Chemistry Journals Awardees 2022

CsOH-Promoted Regiospecific Sulfenylation, Selenylation, and Telluration of Indoles in H2O

Shitang Xu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. of China
,
Rongnan Yi
a   State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. of China
,
Chunling Zeng
a   State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. of China
,
Yue Cui
a   State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. of China
,
a   State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. of China
c   Molecular Science and Biomedicine Laboratory (MBL), Hunan University, Changsha, Hunan, 410082, P. R. of China
,
Xinhua Xu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. of China
,
Ningbo Li
b   Department of Chemistry, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. of China
› Author Affiliations
This work is supported by the National Key Research and Development Program of China (2018YFA0902300), the National Natural Science Foundation of China (No. 21802093 and No. 21273068), the Huxiang Young Talent Program from Hunan Province (2019RS2022), and the Science and Technology Project of Hunan Province (2019sk2201).


Abstract

Various indole-containing compounds have shown impressive pharmaceutical activities against a variety of diseases. However, the functionalization of indoles usually relies on systems that use organic solvents, which do not meet the criteria for green and sustainable chemical development. To address this issue, regiospecific sulfenylation, selenylation, and telluration of indoles were developed using H2O as solvent. The highly efficient chalcogenylation of indoles was achieved utilizing CsOH as a promoter, thus avoiding the use of expensive transition-metal catalysts. This newly developed protocol is characterized by its outstanding features including simple operation, mild conditions, wide substrate scope, excellent functional group tolerance, and recyclability, leading to the convenient synthesis of 3-chalcogenyl-indoles.

Supporting Information



Publication History

Received: 07 April 2022

Accepted after revision: 20 June 2022

Accepted Manuscript online:
20 June 2022

Article published online:
20 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Funk CD. Nat. Rev. Drug. Discovery 2005; 4: 664
    • 1b Unangst PC, Connor DT, Stabler SR, Weikert RJ, Carethers ME, Kennedy JA, Thueson DO, Chestnut JC, Adolphson RL, Conroy MC. J. Med. Chem. 1989; 32: 1360
    • 1c De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Marino-Artico A, Silvestri R. J. Med. Chem. 2004; 47: 6120
    • 1d Zhiani R, Sadeghzadeh SM, Emrani S, Abasian M. J. Organomet. Chem. 2018; 855: 1
    • 1e Silvestri R, Artico M, Bruno B, Massa S, Novellino E, Greco G, Marongiu ME, Pani A, De MA, La CP. Antiviral Chem. Chemother. 1998; 9. 139
    • 2a Wang HH, Shi T, Gao WW, Wang YQ, Li JF, Jiang Y, Hou YS, Chen C, Peng X, Wang Z. Chem. Asian J. 2017; 12: 2675
    • 2b Huang Y, Bae SA, Zhu Z, Guo N, Roth BL, Laruelle M. J. Med. Chem. 2005; 48: 2559
    • 2c Wen Z, Xu J, Wang Z, Qi H, Xu Q, Bai Z, Zhang Q, Bao K, Wu Y, Zhang W. Eur. J. Med. Chem. 2015; 90: 184
    • 2d Sahu PK, Umme T, Yu J, Nayak A, Kim G, Noh M, Lee JY, Kim DD, Jeong LS. J. Med. Chem. 2015; 58: 8734
    • 3a De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E. J. Med. Chem. 2006; 49: 947
    • 3b Maeda Y, Koyabu M, Nishimura T, Uemura S. J. Org. Chem. 2004; 69: 7688
  • 4 Cross DA. E, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR. V, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Brewer MR, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH. P, Cantarini M, Kim D.-W, Ranson MR, Pao W. Cancer Discovery 2014; 4: 1046
    • 5a Ye L.-m, Chen J, Mao P, Zhang X.-j, Yan M. Tetrahedron Lett. 2017; 58: 2743
    • 5b Liu CR, Ding LH. Org. Biomol. Chem. 2015; 13: 2251
    • 5c Lemir ID, Castro-Godoy WD, Heredia AA, Arguello JE. RSC Adv. 2019; 9: 22685
    • 5d Xiao F, Xie H, Liu S, Deng GJ. Adv. Synth. Catal. 2014; 356: 364
    • 5e Li J, Cai ZJ, Wang SY, Ji SJ. Org. Biomol. Chem. 2016; 14: 9384
    • 6a Yadav JS, Reddy BV. S, Reddy YJ, Praneeth K. Synthesis 2009; 1520
    • 6b Yadav JS, Reddy BV. S, Reddy YJ. Tetrahedron Lett. 2007; 48: 7034
    • 6c LaR G, Gatti V, Famiglini V, Piscitelli F, Silvestri R. ACS Comb. Sci. 2012; 14: 258
    • 6d Sang P, Chen ZK, Zou JW, Zhang YH. Green Chem. 2013; 15: 2096
    • 6e Wen Z, Li X, Zuo D, Lang B, Wu Y, Jiang M, Ma H, Bao K, Zhang W. Sci. Rep. 2016; 6: 23986
    • 6f Ferreira NL, Azeredo JB, Fiorentin BL, Braga AL. Eur. J. Org. Chem. 2015; 5070
    • 6g Yu Y, Zhou Y, Song Z, Liang G. Org. Biomol. Chem. 2018; 16: 4958
    • 7a Ranken PF, Mckinnie BG. J. Org. Chem. 1989; 54: 2985
    • 7b Hamel P. J. Org. Chem. 2002; 67: 2854
  • 8 Matsugi M, Murata K, Gotanda K, Nambu H, Anilkumar G, Matsumoto K, Kita Y. J. Org. Chem. 2001; 32: 2434
  • 9 Tudge M, Tamiya M, Savarin C, Humphrey GR. Org. Lett. 2006; 8: 565
    • 10a Huang D, Chen J, Dan W, Ding J, Liu M, Wu H. Adv. Synth. Catal. 2012; 354: 2123
    • 10b Atkinson JG, Hamel P, Girard Y. Synthesis 1988; 480
    • 10c Schlosser KM, Krasutsky AP, Hamilton HW, Reed JE, Karen S. Org. Lett. 2004; 6: 819
  • 11 Saba S, Rafique J, Franco MS, Schneider AR, Espíndola L, Silva DO, Braga AL. Org. Biomol. Chem. 2018; 16: 880
    • 12a Zhang QB, Ban YL, Yuan PF, Peng SJ, Fang JG, Wu LZ, Liu Q. Green Chem. 2017; 19: 5559
    • 12b Leadbeater NE. J. Am. Chem. Soc. 2011; 133: 2011
  • 13 Fang XL, Tang RY, Zhong P, Li JH. Synthesis 2009; 4183
  • 14 Vásquez-Céspedes S, Ferry A, Candish L, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
  • 15 Luo D, Wu G, Yang H, Liu M, Gao W, Huang X, Chen J, Wu H. J. Org. Chem. 2016; 47: 4485
  • 16 Li H, Wang X, Yan J. Appl. Organomet. Chem. 2017; 31: 3864
  • 17 Rafique J, Saba S, Franco MS, Bettanin L, Schneider AR, Silva LT, Braga AL. Chem. Eur. J. 2018; 24: 4173
    • 18a Ge WL, Wei YY. Green Chem. 2012; 14: 2066
    • 18b Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 79: 4125
  • 19 Prasad CD, Kumar S, Sattar M, Adhikary A. Org. Biomol. Chem. 2013; 11: 8036
  • 20 Silveira CC, Mendes SR, Wolf L, Martins GM, Muehlen LV. Tetrahedron 2012; 68: 10464
    • 21a Dueno EE, Chu F, Kim SI, Jung KW. Tetrahedron Lett. 1999; 40: 1843
    • 21b Busch-Petersen J, Bo YX, Corey EJ. Tetrahedron Lett. 1999; 40: 2065
    • 21c Kondoh A, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2357
    • 21d Tzalis D, Knochel P. Angew. Chem. Int. Ed. 1999; 38: 1463
    • 21e Kondoh A, Takami K, Yorimitsu H, Oshima K. J. Org. Chem. 2005; 70: 6468
  • 22 Typical Procedure for the Synthesis of 3-(Phenylthio)-1H-indole Indole (0.5 mmol), diphenyl disulfide (0.25 mmol), CsOH·H2O (0.75 mmol), and H2O (0.2 mL) were added. Then the mixture was stirred at 70 °C, under air for 5 h. After the reaction finished, the mixture was extracted with ethyl acetate (3 × 3.0 mL). The upper layer of the organic phase is slowly drawn out with a syringe. The remaining trace water phase is used for the next cycle. The organic phase was dried over Na2SO4 and concentrated under vacuum. The residue was purified by flash chromatography on silica gel to afford give a white solid 3a;18a 104.7 mg, 93% yield. 1H NMR (400 MHz, CDCl3): δ = 8.39 (s, 1 H), 7.61 (d, J= 7.6 Hz, 1 H), 7.46 (d, J= 2.4 Hz, 1 H), 7.42 (d, J= 8.4 Hz, 1 H), 7.28–7.24 (m, 1 H), 7.18–7.13 (m, 3 H), 7.10 (d, J = 7.6 Hz, 2 H), 7.06–7.03 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 139.3, 136.5, 130.7, 129.1, 128.7, 125.9, 124.8, 123.1, 120.9, 119.7, 111.6, 102.8. MS: m/z = 225.3 [M+].