Synthesis 2022; 54(20): 4495-4502
DOI: 10.1055/a-1878-8084
paper

Construction of Quaternary Allylic Amino Acid Derivatives through Palladium-Catalyzed Allylic Alkylation Reaction of Azlactones with Vinyl Aziridine

Ke-Xin Huang
a   School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, P. R. of China
,
Zhao-Yang Chen
a   School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, P. R. of China
,
Xue-Guo Liu
a   School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, P. R. of China
,
Hong-Yong Ye
a   School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, P. R. of China
,
Wen-Chao Gao
b   School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473000, P. R. of China
› Author Affiliations
We are grateful for the financial support from Youth Foundation of Henan Scientific Committee (No. 222300420249), Foundation of Henan Education Committee (No. 21A150039) and Doctoral Research Start-up Fund project of Nanyang Institute of Technology (No. NGBJ-2021-03).


Abstract

A highly efficient Pd-catalyzed allylic alkylation reaction of azlactones with vinyl aziridine has been achieved for the first time to access­ functionalized quaternary allylic amino acid derivatives (17 examples, up to 89% yield and 80% ee). Moreover, the broad scope and easy transformations of the products reinforce the value of this approach, which can enrich the chemistry of quaternary allylic amino acid derivatives.

Supporting Information



Publication History

Received: 15 April 2022

Accepted after revision: 20 June 2022

Accepted Manuscript online:
20 June 2022

Article published online:
27 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Venkatraman J, Shankaramma SC, Balaram P. Chem. Rev. 2001; 101: 3131
  • 2 Liu WX, Wang R. Med. Res. Rev. 2012; 32: 536
    • 3a Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
    • 3b Hyslop JF, Lovelock SL, Sutton PW, Brown KK, Watson AJ. B, Roiban G.-D. Angew. Chem. Int. Ed. 2018; 57: 13821
    • 3c Cativiela C, Ordóňez M, Viveros-Ceballos JL. Tetrahedron 2020; 76: 130875
    • 4a Fisk JS, Mosey RA, Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
    • 4b de Castro PP, Carpanez AG, Amarante GW. Chem. Eur. J. 2016; 22: 10294
    • 4c Ma C, Zhou J.-Y, Zhang Y.-Z, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2018; 57: 5398
    • 4d Marra IF. S, de Castro PP, Amarante GW. Eur. J. Org. Chem. 2019; 5830

      For some recent examples:
    • 5a Cabrera S, Reyes E, Alemán J, Milelli A, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2008; 130: 12031
    • 5b Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
    • 5c Terada M, Moriya K, Kanomata K, Sorimachi K. Angew. Chem. Int. Ed. 2011; 50: 12586
    • 5d Zhou H, Yang H, Liu M, Xia C, Jiang G. Org. Lett. 2014; 16: 5350
    • 5e Zhang J, Liu X, Wu C, Zhang P, Chen J, Wang R. Eur. J. Org. Chem. 2014; 7104
    • 5f Kalek M, Fu GC. J. Am. Chem. Soc. 2015; 137: 9438
    • 5g Wei X, Liu D, An Q, Zhang W. Org. Lett. 2015; 17: 5768
    • 5h Wang T, Yu Z, Hoon DL, Phee CY, Lan Y, Lu Y. J. Am. Chem. Soc. 2016; 138: 265
    • 5i Yoshioka K, Yamada K, Uraguchi D, Ooi T. Chem. Commun. 2017; 53: 5495
    • 5j Zhang L, Han Y, Huang A, Zhang P, Li P, Li W. Org. Lett. 2019; 21: 7415
    • 5k Zhang Z, Xiao F, Wu H.-M, Dong X.-Q, Wang C.-J. Org. Lett. 2020; 22: 569

      For some examples, see:
    • 6a Lu G, Birman VB. Org. Lett. 2011; 13: 356
    • 6b Wang C, Luo H.-W, Gong L.-Z. Synlett 2011; 992
    • 6c Rodríguez-Docampo Z, Quigley C, Tallon S, Connon SJ. J. Org. Chem. 2012; 77: 2407
    • 6d Palacio C, Connon SJ. Eur. J. Org. Chem. 2013; 5398
    • 6e Yu K, Liu X, Lin X, Lin L, Feng X. Chem. Commun. 2015; 51: 14897
    • 6f Tallon S, Manoni F, Connon SJ. Angew. Chem. Int. Ed. 2015; 54: 813
    • 6g Zhang Y.-C, Yang Q, Yang X, Zhu Q.-N, Shi F. Asian J. Org. Chem. 2016; 5: 914
    • 6h Mandai H, Hongo K, Fujiwara T, Fujii K, Mitsudo K, Suga S. Org. Lett. 2018; 20: 4811
    • 6i Xie M.-S, Huang B, Li N, Tian Y, Wu X.-X, Deng Y, Qu G.-R, Guo H.-M. J. Am. Chem. Soc. 2020; 142: 19226

      For some recent examples, see:
    • 7a Dong S, Liu X, Zhu Y, He P, Lin L, Feng X. J. Am. Chem. Soc. 2013; 135: 10026
    • 7b Liu X, Wang Y, Yang D, Zhang J, Liu D, Su W. Angew. Chem. Int. Ed. 2016; 55: 8100
    • 7c Yu X.-Y, Chen J.-R, Wei Q, Cheng H.-G, Liu Z.-C, Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
    • 7d Zhang S.-Y, Lv M, Yin S.-J, Li N.-K, Zhang J.-Q, Wang X.-W. Adv. Synth. Catal. 2016; 358: 143
    • 7e Zhang L, Liu Y, Liu K, Liu Z, He N, Li W. Org. Biomol. Chem. 2017; 15: 8743
    • 7f Zhou J, Wang M.-L, Gao X, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2017; 53: 3531
    • 7g Ruan S, Lin X, Xie L, Lin L, Feng X, Liu X. Org. Chem. Front. 2018; 5: 32
    • 7h Lin X, Fang F, Lin W, Liu Z, Chang X, Li P, Li W. Asian. J. Org. Chem. 2020; 9: 1187
    • 7i Yuan W.-C, Quan B.-X, Zhao J.-Q, You Y, Wang Z.-H, Zhou M.-Q. J. Org. Chem. 2020; 85: 11812
    • 7j Xie L, Li Y, Dong S, Feng X, Liu X. Chem. Commun. 2021; 57: 239
    • 8a Zhao H.-W, Ding W.-Q, Wang L.-R, Guo J.-M, Song X.-Q, Wu H.-H, Tang Z, Fan X.-Z, Bi X.-F. Eur. J. Org. Chem. 2020; 5557
    • 8b Liu Z, Feng X, Xu J, Jiang X, Cai X. Tetrahedron Lett. 2020; 61: 151694

      For some recent examples, see:
    • 9a Feng J.-J, Zhang J. ACS Catal. 2016; 6: 6651
    • 9b Rivinoja DJ, Gee YS, Gardiner MG, Ryan JH, Hyland CJ. T. ACS Catal. 2017; 7: 1053
    • 9c Gao J, Zhang J, Fang S, Feng J, Lu T, Du D. Org. Lett. 2020; 22: 7725
    • 9d Drew MA, Tague AJ, Richardson C, Pyne SG, Hyland CJ. T. Org. Lett. 2021; 23: 4635
    • 9e Niu B, Wei Y, Shi M. Org. Chem. Front. 2021; 8: 3475
    • 9f Xiao S, Chen B, Jiang Q, He L, Chu W.-D, He C.-Y, Liu Q.-Z. Org. Chem. Front. 2021; 8: 3729
    • 10a Trost BM, Fandrick DR, Brodmann T, Stiles DT. Angew. Chem. Int. Ed. 2007; 46: 6123
    • 10b Ohno H. Chem. Rev. 2014; 114: 7784
    • 10c Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 10d Lin T.-Y, Wu H.-H, Feng J.-J, Zhang J. ACS Catal. 2017; 7: 4047
    • 10e Lin T.-Y, Wu H.-H, Feng J.-J, Zhang J. Org. Lett. 2017; 19: 2897
    • 10f Pham QH, Tague AJ, Richardson C, Hyland CJ. T, Pyne SG. Chem. Sci. 2021; 12: 12695
    • 10g Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
    • 11a Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
    • 11b Wang Y.-N, Xiong Q, Lu L.-Q, Zhang Q.-L, Wang Y, Lan Y, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 11013
    • 11c Sun M, Wan X, Zhou S.-J, Mei G.-J, Shi F. Chem. Commun. 2019; 55: 1283