RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2022; 54(20): 4495-4502
DOI: 10.1055/a-1878-8084
DOI: 10.1055/a-1878-8084
paper
Construction of Quaternary Allylic Amino Acid Derivatives through Palladium-Catalyzed Allylic Alkylation Reaction of Azlactones with Vinyl Aziridine
We are grateful for the financial support from Youth Foundation of Henan Scientific Committee (No. 222300420249), Foundation of Henan Education Committee (No. 21A150039) and Doctoral Research Start-up Fund project of Nanyang Institute of Technology (No. NGBJ-2021-03).

Abstract
A highly efficient Pd-catalyzed allylic alkylation reaction of azlactones with vinyl aziridine has been achieved for the first time to access functionalized quaternary allylic amino acid derivatives (17 examples, up to 89% yield and 80% ee). Moreover, the broad scope and easy transformations of the products reinforce the value of this approach, which can enrich the chemistry of quaternary allylic amino acid derivatives.
Key words
allylic alkylation - quaternary allylic amino acid derivatives - Pd-catalyzed - vinyl aziridine - azlactonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1878-8084.
- Supporting Information
Publikationsverlauf
Eingereicht: 15. April 2022
Angenommen nach Revision: 20. Juni 2022
Accepted Manuscript online:
20. Juni 2022
Artikel online veröffentlicht:
27. Juli 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Venkatraman J, Shankaramma SC, Balaram P. Chem. Rev. 2001; 101: 3131
- 2 Liu WX, Wang R. Med. Res. Rev. 2012; 32: 536
- 3a Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 3b Hyslop JF, Lovelock SL, Sutton PW, Brown KK, Watson AJ. B, Roiban G.-D. Angew. Chem. Int. Ed. 2018; 57: 13821
- 3c Cativiela C, Ordóňez M, Viveros-Ceballos JL. Tetrahedron 2020; 76: 130875
- 4a Fisk JS, Mosey RA, Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
- 4b de Castro PP, Carpanez AG, Amarante GW. Chem. Eur. J. 2016; 22: 10294
- 4c Ma C, Zhou J.-Y, Zhang Y.-Z, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2018; 57: 5398
- 4d Marra IF. S, de Castro PP, Amarante GW. Eur. J. Org. Chem. 2019; 5830
- 5a Cabrera S, Reyes E, Alemán J, Milelli A, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2008; 130: 12031
- 5b Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
- 5c Terada M, Moriya K, Kanomata K, Sorimachi K. Angew. Chem. Int. Ed. 2011; 50: 12586
- 5d Zhou H, Yang H, Liu M, Xia C, Jiang G. Org. Lett. 2014; 16: 5350
- 5e Zhang J, Liu X, Wu C, Zhang P, Chen J, Wang R. Eur. J. Org. Chem. 2014; 7104
- 5f Kalek M, Fu GC. J. Am. Chem. Soc. 2015; 137: 9438
- 5g Wei X, Liu D, An Q, Zhang W. Org. Lett. 2015; 17: 5768
- 5h Wang T, Yu Z, Hoon DL, Phee CY, Lan Y, Lu Y. J. Am. Chem. Soc. 2016; 138: 265
- 5i Yoshioka K, Yamada K, Uraguchi D, Ooi T. Chem. Commun. 2017; 53: 5495
- 5j Zhang L, Han Y, Huang A, Zhang P, Li P, Li W. Org. Lett. 2019; 21: 7415
- 5k Zhang Z, Xiao F, Wu H.-M, Dong X.-Q, Wang C.-J. Org. Lett. 2020; 22: 569
- 6a Lu G, Birman VB. Org. Lett. 2011; 13: 356
- 6b Wang C, Luo H.-W, Gong L.-Z. Synlett 2011; 992
- 6c Rodríguez-Docampo Z, Quigley C, Tallon S, Connon SJ. J. Org. Chem. 2012; 77: 2407
- 6d Palacio C, Connon SJ. Eur. J. Org. Chem. 2013; 5398
- 6e Yu K, Liu X, Lin X, Lin L, Feng X. Chem. Commun. 2015; 51: 14897
- 6f Tallon S, Manoni F, Connon SJ. Angew. Chem. Int. Ed. 2015; 54: 813
- 6g Zhang Y.-C, Yang Q, Yang X, Zhu Q.-N, Shi F. Asian J. Org. Chem. 2016; 5: 914
- 6h Mandai H, Hongo K, Fujiwara T, Fujii K, Mitsudo K, Suga S. Org. Lett. 2018; 20: 4811
- 6i Xie M.-S, Huang B, Li N, Tian Y, Wu X.-X, Deng Y, Qu G.-R, Guo H.-M. J. Am. Chem. Soc. 2020; 142: 19226
- 7a Dong S, Liu X, Zhu Y, He P, Lin L, Feng X. J. Am. Chem. Soc. 2013; 135: 10026
- 7b Liu X, Wang Y, Yang D, Zhang J, Liu D, Su W. Angew. Chem. Int. Ed. 2016; 55: 8100
- 7c Yu X.-Y, Chen J.-R, Wei Q, Cheng H.-G, Liu Z.-C, Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
- 7d Zhang S.-Y, Lv M, Yin S.-J, Li N.-K, Zhang J.-Q, Wang X.-W. Adv. Synth. Catal. 2016; 358: 143
- 7e Zhang L, Liu Y, Liu K, Liu Z, He N, Li W. Org. Biomol. Chem. 2017; 15: 8743
- 7f Zhou J, Wang M.-L, Gao X, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2017; 53: 3531
- 7g Ruan S, Lin X, Xie L, Lin L, Feng X, Liu X. Org. Chem. Front. 2018; 5: 32
- 7h Lin X, Fang F, Lin W, Liu Z, Chang X, Li P, Li W. Asian. J. Org. Chem. 2020; 9: 1187
- 7i Yuan W.-C, Quan B.-X, Zhao J.-Q, You Y, Wang Z.-H, Zhou M.-Q. J. Org. Chem. 2020; 85: 11812
- 7j Xie L, Li Y, Dong S, Feng X, Liu X. Chem. Commun. 2021; 57: 239
- 8a Zhao H.-W, Ding W.-Q, Wang L.-R, Guo J.-M, Song X.-Q, Wu H.-H, Tang Z, Fan X.-Z, Bi X.-F. Eur. J. Org. Chem. 2020; 5557
- 8b Liu Z, Feng X, Xu J, Jiang X, Cai X. Tetrahedron Lett. 2020; 61: 151694
- 9a Feng J.-J, Zhang J. ACS Catal. 2016; 6: 6651
- 9b Rivinoja DJ, Gee YS, Gardiner MG, Ryan JH, Hyland CJ. T. ACS Catal. 2017; 7: 1053
- 9c Gao J, Zhang J, Fang S, Feng J, Lu T, Du D. Org. Lett. 2020; 22: 7725
- 9d Drew MA, Tague AJ, Richardson C, Pyne SG, Hyland CJ. T. Org. Lett. 2021; 23: 4635
- 9e Niu B, Wei Y, Shi M. Org. Chem. Front. 2021; 8: 3475
- 9f Xiao S, Chen B, Jiang Q, He L, Chu W.-D, He C.-Y, Liu Q.-Z. Org. Chem. Front. 2021; 8: 3729
- 10a Trost BM, Fandrick DR, Brodmann T, Stiles DT. Angew. Chem. Int. Ed. 2007; 46: 6123
- 10b Ohno H. Chem. Rev. 2014; 114: 7784
- 10c Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 10d Lin T.-Y, Wu H.-H, Feng J.-J, Zhang J. ACS Catal. 2017; 7: 4047
- 10e Lin T.-Y, Wu H.-H, Feng J.-J, Zhang J. Org. Lett. 2017; 19: 2897
- 10f Pham QH, Tague AJ, Richardson C, Hyland CJ. T, Pyne SG. Chem. Sci. 2021; 12: 12695
- 10g Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
For some recent examples:
For some examples, see:
For some recent examples, see:
For some recent examples, see: