Synthesis 2022; 54(20): 4576-4582
DOI: 10.1055/a-1874-4935
paper

Aryl Ketone Mediated Light-Driven Naphthylation of C(sp3)–H Bonds Attached to either Oxygen or Nitrogen Substituents

Masaya Azami
,
Toshihiro Murafuji
,
Shin Kamijo
This research was partially supported by the Japan Society for the Promotion of Science (JSPS, KAKENHI Grant Number JP22K05096).


Abstract

A light-driven naphthylation was achieved at C(sp3)–H bonds attached to either oxygen or nitrogen substituents using sulfonylnaphthalenes as a naphthalene precursor in the presence of 4-benzoylpyridine at ambient temperature. The present transformation is proposed to proceed through the generation of a carbon radical species via chemoselective cleavage of the heteroatom-substituted C(sp3)–H bond by photoexcited 4-benzoylpyridine, the addition of the derived carbon radical to the electron-deficient sulfonylnaphthalene, and then rearomatization by releasing sulfinyl radical.

Supporting Information



Publication History

Received: 11 May 2022

Accepted after revision: 13 June 2022

Accepted Manuscript online:
13 June 2022

Article published online:
02 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For representative books on functionalization of non-acidic C–H bonds, see:
    • 1a Handbook of C–H Transformations . Dyker G. Wiley-VCH; Weinheim: 2005
    • 1b Handbook of Reagents for Organic Synthesis: Reagents for Direct Functionalization of C–H Bonds. Paquette LA, Fuchs PL. Wiley; Chichester: 2007
    • 1c Alkane C–H Activation by Single-Site Metal Catalysis. Pérez PJ. Springer; Dordrecht: 2012
    • 1d From C–H to C–C Bonds: Cross-Dehydrogenative-Coupling . Li C.-J. Royal Society of Chemistry; Cambridge: 2015
    • 1e C–H Bond Activation in Organic Synthesis 2015
    • 1f Science of Synthesis: Catalytic Transformations via C–H Activation 2. Yu J.-Q. Thieme; Stuttgart: 2016
  • 2 Kamijo S, Kamijo K, Murafuji T. J. Org. Chem. 2017; 82: 2664
  • 3 Kamijo S, Kamijo K, Murafuji T. Synthesis 2019; 51: 3859

    • For representative reports of light-driven aryl ketone mediated C(sp3)–H functionalizations from other research groups, see:
    • 4a Hoshikawa T, Inoue M. Chem. Sci. 2013; 4: 3118
    • 4b Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
    • 4c Kee CW, Chin KF, Wong MW, Tan C.-H. Chem. Commun. 2014; 50: 8211
    • 4d Xia J.-B, Zhu C, Chen C. Chem. Commun. 2014; 50: 11701
    • 4e Cantillo D, de Frutos O, Rincón JA, Mateos C, Kappe CO. J. Org. Chem. 2014; 79: 8486
    • 4f Nagatomo M, Yoshioka S, Inoue M. Chem. Asian J. 2015; 10: 120
    • 4g Ota E, Mikame Y, Hirai G, Nishiyama S, Sodeoka M. Synlett 2016; 27: 1128
    • 5a Lipshutz BH, Sengupta S. Org. React. 1992; 41: 135
    • 5b Amano T, Yoshikawa K, Sano T, Ohuchi Y, Shiono M, Ishiguro M, Fujita Y. Synth. Commun. 1986; 16: 499
    • 5c Wakefield BJ. Organomagnesium Methods in Organic Synthesis. Academic; London: 1995
    • 5d Kruse CG, Wijsman A, van der Gen A. J. Org. Chem. 1979; 44: 1847
    • 6a Olah GA, Krishnamurti R, Prakash GK. S. In Comprehensive Organic Synthesis, Vol. 3. Trost BM, Fleming I. Pergamon; Oxford: 1991: 293-339
    • 6b He T, Klare HF. T, Oestreich M. ACS Catal. 2021; 11: 12186
    • 7a Sandrock DL. In Science of Synthesis: Cross Coupling and Heck-Type Reactions 1 . Molander GA. Thieme; Stuttgart: 2013: 323-357
    • 7b Molander GA, Beaumard F. Org. Lett. 2011; 13: 1242
    • 7c Molander GA, Beaumard F, Niethamer TK. J. Org. Chem. 2011; 76: 8126
    • 7d Murai N, Yonaga M, Tanaka K. Org. Lett. 2012; 14: 1278

      Other representative examples of the coupling strategies for preparation of alkylated naphthalenes:
    • 8a Gourai SK, Jin M, Hatakeyama T, Nakamura M. Org. Lett. 2012; 14: 1066
    • 8b Silberstein A, Ramgren SD, Garg NK. Org. Lett. 2012; 14: 3796
    • 8c Sun C.-L, Krause H, Fürstner A. Adv. Synth. Catal. 2014; 356: 1281
    • 8d Iwasaki T, Min X, Fukuoka A, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2016; 55: 5550
    • 9a Ueno R, Shirakawa E. Org. Biomol. Chem. 2014; 12: 7469
    • 9b Ueno R, Ikeda Y, Shirakawa E. Eur. J. Org. Chem. 2017; 4188
    • 9c Ikeda Y, Ueno R, Akai Y, Shirakawa E. Chem. Commun. 2018; 54: 10471
    • 9d Aoki K, Yohekura K, Ikeda Y, Ueno R, Shirakawa E. Adv. Synth. Catal. 2020; 362: 2200

      Other recent examples for preparation of alkylated naphthalenes:
    • 10a Zhu J, Pérez M, Caputo CB, Stephan DW. Angew. Chem. Int. Ed. 2016; 55: 1417
    • 10b Li H, Breen CP, Seo H, Jamison TF, Fang Y.-Q, Bio MM. Org. Lett. 2018; 20: 1338
    • 10c Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430
    • 10d Mane KD, Mukherjee A, Vanka K, Suryavanshi G. J. Org. Chem. 2019; 84: 2039

      For examples of light-driven C(sp3)–H functionalizations utilizing 4-BzPy, see:
    • 11a Kamijo S, Watanabe M, Kamijo K, Tao K, Murafuji T. Synthesis 2016; 48: 115
    • 11b Kamijo S, Takao G, Kamijo K, Hirota M, Tao K, Murafuji T. Angew. Chem. Int. Ed. 2016; 55: 9695

      For closely related examples of light-driven aryl ketone mediated C(sp3)–H functionalizations from our group, see:
    • 12a Amaoka Y, Nagatomo M, Watanabe M, Tao K, Kamijo S, Inoue M. Chem. Sci. 2014; 5: 4339
    • 12b Kamijo S, Takao G, Kamijo K, Tsuno T, Ishiguro K, Murafuji T. Org. Lett. 2016; 18: 4912
    • 12c Kamijo S, Kamijo K, Maruoka K, Murafuji T. Org. Lett. 2016; 18: 6516
  • 13 A radical chain mechanism, by hydrogen atom abstraction from THF (1a) with in-situ generated methanesulfinyl radical, seems not to be operating in the present case because the reaction ceased when the light was turned off; see Supporting Information for details and also, see: Wang Y.-T, Shih Y.-L, Wu Y.-K, Ryu I. Adv. Synth. Catal. 2022; 364: 1039
  • 14 We, indeed, confirmed that the reaction of THF (1a) with 4-methoxy-1-(methylsulfonyl)naphthalene (2j) in the presence of 4-BzPy did not provide the expected product 3aj, and the recovery of a significant amount of the naphthalene precursor 2j was observed.
  • 15 The reason for the different reactivities of Ph2CO, 2-BzPy, 3-BzPy, and 4-BzPy is not clear at the moment.
  • 16 For beneficial effect of a base, see: Lipp A, Lahm G, Opatz T. J. Org. Chem. 2016; 81: 4890
  • 17 The addition of K2CO3 might work as an effective scavenger of in-situ formed methanesulfinic acid and assists the regeneration of 4-BzPy.
  • 18 The reactions of three- and four-membered cyclic ethers did not produce the expected alkylated naphthalenes. Furthermore, the naphthylation of tetrahydrothiophene, a sulfur-containing cyclic compound, resulted in a complex mixture of unidentified products and the expected adduct could not be identified.
  • 19 The formation of 1-(tetrahydrofuran-2-yloxy)-2,2,6,6-tetramethylpiperidine (4) [CAS Reg. No. 197246-28-9] was confirmed by comparison with the reported data; see: Pan S, Liu J, Li H, Wang Z, Guo X, Li Z. Org. Lett. 2010; 12: 1932
  • 20 We also measured the kinetic isotope effect (KIE) by treating a mixture of THF (1a) and its fully deuterated analogue 1a-d with the naphthalene precursor 2b under the optimized conditions. The value of the KIE was determined to be 1.6. A relatively small value of the KIE might indicate that the C–H bond cleavage by photoexcited 4-BzPy could be taking place in more concerted fashion, for instance, via electron transfer between photoexcited 4-BzPy and THF followed by proton abstraction. In any case, further investigations are required to clarify the detailed reaction pathway.
  • 21 Singh PP, Gudup S, Ambala S, Singh U, Dadhwal S, Singh B, Sawant SD, Vishwakarma RA. Chem. Commun. 2011; 47: 5852