Synthesis 2022; 54(22): 5110-5118
DOI: 10.1055/a-1870-9282
paper

Bifunctional Ionic Liquid Catalyzed Multicomponent Arylsulfonation of Phenols with Aryl Triazenes and DABSO for the Synthesis of Diaryl Sulfones

Chengzong Tang
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
,
Yonghong Zhang
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
,
Xinlei Zhou
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
,
Bin Wang
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
,
Weiwei Jin
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
,
Yu Xia
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
,
Chenjiang Liu
a   Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
b   College of Future Technology, Xinjiang University, Urumqi 830017, Xinjiang, P. R. of China
› Author Affiliations
This work was supported by the Natural Science Foundation of Xinjiang­ Province (2021D01E10) and the National Natural Science Foundation of China (21861036 and 21961037).


Abstract

The bifunctional Lewis acidic ionic liquid (LAIL) catalyzed multicomponent arylsulfonation of phenols with aryl triazenes and DABSO was developed. By using LAILs as redox and Lewis acidic catalysts without any additional promoter or ligand through an N2 extrusion/SO2 insertion sequence, various aryl triazenes were transformed into aryl sulfonyl radicals by coupling with DABSO, and these were then coupled with phenoxy radicals to afford the corresponding diaryl sulfones in good yields. The good functional-group tolerance, gram-scale reaction, and avoidance of the use of SO2 gas further demonstrated the practicality of this arylsulfonation reaction.

Supporting Information



Publication History

Received: 21 April 2022

Accepted after revision: 08 June 2022

Accepted Manuscript online:
08 June 2022

Article published online:
26 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Galli C. Chem. Rev. 1988; 88: 765
    • 1b Roglans A, Pla-Quintana A, Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
    • 1c Taylor JG, Moro AV, Correia CR. D. Eur. J. Org. Chem. 2011; 1403
    • 1d Mo F, Qiu D, Zhang Y, Wang J. Acc. Chem. Res. 2018; 51: 496
    • 1e Koziakov D, Wu G, Wangelin AJ. V. Org. Biomol. Chem. 2018; 16: 4942
    • 1f Felpin F.-X, Sengupta S. Chem. Soc. Rev. 2019; 48: 1150
    • 1g Habraken ER. M, Jupp AR, Slootweg JC. Synlett 2019; 30: 875
    • 1h Medina-Mercado I, Porcel S. Chem. Eur. J. 2020; 26: 16206
    • 1i Mo F, Qiu D, Zhang L, Wang J. Chem. Rev. 2021; 121: 5741
    • 1j Ahn G.-N, Sharma BM, Lahore S, Yim S.-J, Vidyacharan S, Kim D.-P. Commun. Chem. 2021; 4: 53
    • 1k Babu SS, Muthuraja P, Yadav P, Gopinath P. Adv. Synth. Catal. 2021; 363: 1782
    • 2a Zollinger H. Acc. Chem. Res. 1973; 6: 335
    • 2b Ullrich R, Grewer T. Thermochim. Acta 1993; 225: 201
    • 2c Sheng M, Frurip D, Gorman D. J. Loss Prev. Process Ind. 2015; 38: 114
    • 2d Landman IR, Suleymanov AA, Fadaei-Tirani F, Scopelliti R, Chadwick FM, Severin K. Dalton Trans. 2020; 49: 2317
    • 2e Firth JD, Fairlamb IJ. S. Org. Lett. 2020; 22: 7057
    • 3a Lazny R, Poplawski J, Köbberling J, Enders D, Bräse S. Synlett 1999; 1304
    • 3b Kimball DB, Haley MM. Angew. Chem. Int. Ed. 2002; 41: 3338
    • 3c Bräse S. Acc. Chem. Res. 2004; 37: 805
    • 3d Kölmel DK, Jung N, Bräse S. Aust. J. Chem. 2014; 67: 328
    • 3e Zhang Y, Cao D, Liu W, Hu H, Zhang X, Liu C. Curr. Org. Chem. 2015; 19: 151
    • 3f Dong W, Chen Z, Xu J, Miao M, Ren H. Synlett 2016; 27: 1318
    • 3g Sutar SM, Savanur HM, Malunavar SS, Prabhala P, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2019; 6088
    • 3h Zhang Y, Tang C, Liu Y, Liu C. Chin. J. Org. Chem. 2021; 41: 2587

      For selected recent examples, see:
    • 4a Cao D, Zhang Y, Liu C, Wang B, Sun Y, Abdukadera A, Hu H, Liu Q. Org. Lett. 2016; 18: 2000
    • 4b Zhang Y, Hu H, Liu C, Cao D, Wang B, Sun Y, Abdukadera A. Asian J. Org. Chem. 2017; 6: 102
    • 4c Dai W.-C, Wang Z.-X. Org. Chem. Front. 2017; 4: 1281
    • 4d Kumar S, Pandey AK, Singh R, Singh KN. Eur. J. Org. Chem. 2018; 5942
    • 4e Pandey AK, Kumar S, Singh R, Singh KN. Tetrahedron 2018; 74: 6704
    • 4f Zhang Y, Liu Y, Ma X, Ma X, Wang B, Li H, Huang Y, Liu C. Dyes Pigm. 2018; 158: 438
    • 4g Suleymanov AA, Scopelliti R, Tirani FF, Severin K. Org. Lett. 2018; 20: 3323
    • 4h Liu Y, Ma X, Wu G, Liu Z, Yang X, Wang B, Liu C, Zhang Y, Huang Y. New J. Chem. 2019; 43: 9255
    • 4i Mao S, Chen Z, Wang L, Khadka DB, Xin M, Li P, Zhang S.-Q. J. Org. Chem. 2019; 84: 463
    • 4j Vishwakarma RK, Kumar S, Sharma AK, Singh R, Singh KN. ChemistrySelect 2019; 4: 4064
    • 4k Barragan E, Poyil AN, Yang C.-H, Wang H, Bugarin A. Org. Chem. Front. 2019; 6: 152
    • 4l Tan J.-F, Bormann CT, Perrin FG, Chadwick FM, Severin K, Cramer N. J. Am. Chem. Soc. 2019; 141: 10372
    • 4m Chaubey NR, Vishwakarma RK, Singh KN. ChemistrySelect 2019; 4: 8522
    • 4n Liu C, Wang Z, Wang L, Li P, Zhang Y. Org. Biomol. Chem. 2019; 17: 9209
    • 4o Chand S, Kumar S, Singh R, Singh KN. ChemistrySelect 2019; 4: 718
    • 4p Wippert NA, Jung N, Bräse S. ACS Comb. Sci. 2019; 21: 568
    • 4q Barragan E, Noonikara-Poyil A, Bugarin A. Asian J. Org. Chem. 2020; 9: 593
    • 4r Zhang Y, Cao D, Ma X, Tang C, Wang B, Jin W, Xia Y, Liu C. ChemistrySelect 2021; 6: 5701
    • 4s Wang B, Cao D, Ma X, Feng Y, Zhang L, Zhang Y, Liu C. Arabian J. Chem. 2021; 14: 103158
    • 5a Li W, Wu X.-F. Org. Lett. 2015; 17: 1910
    • 5b Yin Z, Wang Z, Wu X.-F. Eur. J. Org. Chem. 2017; 3992
    • 5c Pandey AK, Chand S, Singh R, Kumar S, Singh KN. ACS Omega 2020; 5: 7627
    • 6a Amarasekara AS. Chem. Rev. 2016; 116: 6133
    • 6b Brown LC, Hogg JM, Swadźba-Kwaśny M. Top. Curr. Chem. 2017; 375: 78
    • 6c Egorova KS, Gordeev EG, Ananikov VP. Chem. Rev. 2017; 117: 7132
    • 6d Zhou J, Sui H, Jia Z, Yang Z, He L, Li X. RSC Adv. 2018; 8: 32832
    • 6e Karimi B, Tavakolian M, Akbari M, Mansouri F. ChemCatChem 2018; 10: 3173
    • 6f Eusebio J. Tetrahedron 2021; 88: 132143
    • 6g Marullo S, D’Anna F, Rizzo C, Billeci F. Org. Biomol. Chem. 2021; 19: 2076
    • 6h Koutsoukos S, Philippi F, Malaret F, Welton T. Chem. Sci. 2021; 12: 6820
    • 6i Zhao Y, Han B, Liu Z. Acc. Chem. Res. 2021; 54: 3172
    • 7a Popoff IC, Engle AR, Whitaker RL, Singhal GH. J. Med. Chem. 1971; 14: 1166
    • 7b Wei X.-L, Wang YZ, Long SM, Bobeczko C, Epstein AJ. J. Am. Chem. Soc. 1996; 118: 2545
    • 7c Spannhoff A, Heinke R, Bauer I, Trojer P, Metzger E, Gust R, Schuele R, Brosch G, Sippl W, Jung M. J. Med. Chem. 2007; 50: 2319
    • 7d Sturino CF, O’Neill G, Lachance N, Boyd M, Berthelette C, Labelle M, Li L, Roy B, Scheigetz J, Tsou N, Aubin Y, Bateman KP, Chauret N, Day SH, Lévesque J, Seto C, Silva JH, Trimble LA, Carriere M, Denis D, Greig G, Kargman S, Lamontagne S, Mathieu M, Sawyer N, Slipetz D, Abraham WM, Jones T, McAuliffe M, Piechuta H, Nicoll-Griffith DA, Wang Z, Zamboni R, Young RN, Metters KM. J. Med. Chem. 2007; 50: 794
    • 7e Kochi T, Noda S, Yoshimura K, Nozaki K. J. Am. Chem. Soc. 2007; 129: 8948
    • 7f Wei H, Fang X, Han Y, Hu B, Yan Q. Eur. Polym. J. 2010; 46: 246
    • 7g Guo M, Li X, Li L, Yu Y, Song Y, Liu B, Jiang Z. J. Membr. Sci. 2011; 380: 171
    • 7h Bourbon P, Appert E, Martin-Mingot A, Michelet B, Thibaudeau S. Org. Lett. 2021; 23: 4115
  • 9 Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Chem. Commun. 2021; 57: 8236

    • For selected recent examples, see:
    • 10a Zhou K, Chen M, Yao L, Wu J. Org. Chem. Front. 2018; 5: 371
    • 10b Wang M, Fan Q, Jiang X. Green Chem. 2018; 20: 5469
    • 10c Qiu G, Zhou K, Gao L, Wu J. Org. Chem. Front. 2018; 5: 691
    • 10d Qiu G, Zhou K, Wu J. Chem. Commun. 2018; 54: 12561
    • 10e Qiu G, Lai L, Cheng J, Wu J. Chem. Commun. 2018; 54: 10405
    • 10f Ye S, Qiu G, Wu J. Chem. Commun. 2019; 55: 1013
    • 10g Wang M, Zhao J, Jiang X. ChemSusChem 2019; 12: 3064
    • 10h Li Y, Chen S, Wang M, Jiang X. Angew. Chem. Int. Ed. 2020; 59: 8907
    • 10i Meng Y, Wang M, Jiang X. Angew. Chem. Int. Ed. 2020; 59: 1346
    • 10j Zeng D, Wang M, Deng W.-P, Jiang X. Org. Chem. Front. 2020; 7: 3956
    • 10k Li Y, Wang M, Jiang X. Chin. J. Chem. 2020; 38: 1521
    • 10l Ye S, Yang M, Wu J. Chem. Commun. 2020; 56: 4145
    • 10m Li Y, Wang M, Jiang X. Org. Lett. 2021; 23: 4657
    • 10n Wang M, Jiang X. Chem. Rec. 2021; 21: 3338
    • 10o Andrews JA, Willis MC. Synthesis 2022; 54: 1695
  • 11 Li W, Beller M, Wu X.-F. Chem. Commun. 2014; 50: 9513
  • 12 Altwicker ER. Chem. Rev. 1967; 67: 475
  • 13 Peris E, Mata J, Loch JA, Crabtree RH. Chem. Commun. 2001; 201
  • 14 McGuinness DS, Gibson VC, Steed JW. Organometallics 2004; 23: 6288