Synlett 2022; 33(17): 1716-1722
DOI: 10.1055/a-1846-5200
letter
Chemical Synthesis and Catalysis in India

Synthesis of Fluorinated 2-Benzylphthalazin-1(2H)-one, 1-Phthalazinamine, and 1-Alkoxy/Benzyloxyphthalazine Derivatives by an Ultrasonication Method

Mohanreddy Pothireddy
a   Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indianoil Odisha Campus, Samantpuri, Bhubaneswar 751013, Odisha, India
,
Gurupada Hazra
b   Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam District, Berhampur 760 010, Odisha, India
,
Penke Vijaya Babu
c   Dr. Reddys Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India
,
b   Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam District, Berhampur 760 010, Odisha, India
,
Rambabu Dandela
a   Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indianoil Odisha Campus, Samantpuri, Bhubaneswar 751013, Odisha, India
› Author Affiliations
R.D. thanks DST-SERB for a Ramanujan fellowship (SB/S2/RJN-075/2016), Core research grant (CRG/2018/000782), and ICT-IOC start-up grant. G.H. and B.T. are grateful to IISER Berhampur for providing financial support in the form of fellowship and an initiation grant (IG/201818/B0034) respectively.


Abstract

Fluorinated heterocyclic compounds have been proven to exhibit interesting potential biological activities. Therefore, various fluorinated 2-benzylphthalazine-1(2H)-one and phthalazine-1-amine derivatives and nonfluorinated 1-alkoxy/benzyloxyphthalazines derivatives have been synthesized by an ultrasonication method. This protocol is more efficient than the conventional method in terms of its product yield and reaction handling and timelines.

Supporting Information



Publication History

Received: 17 February 2022

Accepted after revision: 08 May 2022

Accepted Manuscript online:
08 May 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Sanderson B. J. Chem. Technol. Biotechnol. 2004; 79: 207
    • 1b Luche J.-L. Synthetic Organic Sonochemistry . Springer US; New York: 1998
  • 2 Cravotto G, Cintas P. Chem. Soc. Rev. 2006; 35: 180
  • 3 Martínez RF, Cravotto G, Cintas P. J. Org. Chem. 2021; 86: 13833
  • 4 Low CM. R. Ultrason. Sonochem. 1995; 2: S153
  • 5 Ley SV, Low CM. R. Ultrasound in Synthesis . Springer; Berlin: 1989
  • 6 Jayarajan R, Chandrashekar HB, Dalvi AK, Maiti D. Chem. Eur. J. 2020; 26: 11426
  • 7 Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G. Nat. Protoc. 2010; 5: 607
  • 8 May PA, Moore JS. Chem. Soc. Rev. 2013; 42: 7497
  • 9 Nakamura E, Imanishi Y, Machii D. J. Org. Chem. 1994; 59: 8178
  • 10 Cella R, Stefani HA. Tetrahedron 2009; 65: 2619
  • 11 Hekal MH, El-Naggar AM, Abu El-Azm FS. M, El-Sayed WM. RSC Adv. 2020; 10: 3675
    • 12a Ramarao S, Pothireddy M, Venkateshwarlu R, Moturu KM. V, Siddaiah V, Dandela R, Pal M. J. Mol. Struct. 2022; 1254: 132418
    • 12b Pothireddy M, Bhukta S, Babu PJ, Thirupathi B, Dandela R. Synth. Commun. 2022; 52: 564
  • 13 Haider N, Holzer W. Science of Synthesis . Yamamoto Y. Thieme; Stuttgart: 2004. Vol. 16, Chap. 16.10 315
  • 14 Marzouk MI, Shaker SA, Abdel Hafiz AA, El-Baghdady KZ. Biol. Pharm. Bull. 2016; 39: 239
  • 15 Mylari BL, Larson ER, Beyer TA, Zembrowski WJ, Aldinger CE, Dee MF, Siegel TW, Singleton DH. J. Med. Chem. 1991; 34: 108
  • 16 Ward WH, Sennitt CM, Ross H, Dingle A, Timms D, Mirrlees DJ, Tuffin DP. Biochem. Pharmacol. 1990; 39: 337
  • 17 Engel J, Bork A, Fleischhauer I, Kutscher B, Liefländer M. J. Prakt. Chem./Chem.-Ztg. 1994; 336: 207
  • 18 Ran J.-H, Li M, Tou W.-I, Lei T.-L, Zhou H, Chen CY.-C, Yang B.-X. Zhongguo Yaoli Xuebao 2016; 37: 973
  • 19 Medda F, Sells E, Chang H.-H, Dietrich J, Chappeta S, Smith B, Gokhale V, Meuillet EJ, Hulme C. Bioorg. Med. Chem. Lett. 2013; 23: 528
  • 20 Sánchez-Moreno M, Gómez-Contreras F, Navarro P, Marín C, Ramírez-Macías I, Olmo F, Sanz AM, Campayo L, Cano C, Yunta MJ. R. J. Antimicrob. Chemother. 2012; 67: 387
  • 21 Elmeligie S, Aboul-Magd AM, Lasheen DS, Ibrahim TM, Abdelghany TM, Khojah SM, Abouzid KA. M. J. Enzyme Inhib. Med. Chem. 2019; 34: 1347
  • 22 Amin KM, Barsoum FF, Awadallah FM, Mohamed NE. Eur. J. Med. Chem. 2016; 123: 191
    • 23a Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluorine Chem. 2020; 239: 109639
    • 23b Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
  • 24 del Olmo E, Barboza B, Ybarra MI, López-Pérez JL, Carrón R, Sevilla MA, Boselli C, San Feliciano A. Bioorg. Med. Chem. Lett. 2006; 16: 2786
  • 25 Saranya S, Radhika S, Afsina Abdulla CM, Anilkumar G. J. Heterocycl. Chem. 2021; 58: 1570
  • 26 CCDC 2150995, 2150994, and 2132768 contain the supplementary crystallographic data for compounds 3c, 6b, and 7a, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 27 Colombano G, Travelli C, Galli U, Caldarelli A, Chini MG, Canonico PL, Sorba G, Bifulco G, Tron GC, Genazzani AA. J. Med. Chem. 2010; 53: 616
    • 28a Sánchez-Moreno M, Sanz AM, Gómez-Contreras F, Navarro P, Marín C, Ramírez-Macias I, Rosales MJ, Olmo F, Garcia-Aranda I, Campayo L, Cano C, Arrebola F, Yunta MJ. R. J. Med. Chem. 2011; 54: 970
    • 28b Sanz AM, Gómez-Contreras F, Navarro P, Sánchez-Moreno M, Boutaleb-Charki S, Campuzano J, Pardo M, Osuna A, Cano C, Yunta MJ. R, Campayo L. J. Med. Chem. 2008; 51: 1962
  • 29 Rizk SA, Abdelwahab SS, El-Badawy AA. J. Heterocycl. Chem. 2019; 56: 2347
  • 30 Bian M, Deng X.-Q, Gong G.-H, Wei C.-X, Quan Z.-S. J. Enzyme Inhib. Med. Chem. 2013; 28: 792
  • 31 4-(4-Chlorobenzyl)-2-[4-(trifluoromethoxy)benzyl]phthalazin-1(2H)-one (3a): Typical Procedure A mixture of 4-(4-chlorobenzyl)phthalazin-1(2H)-one (1; 0.37 mmol, 1.0 equiv), 4-(trifluoromethoxy)benzyl bromide (2a; 0.5 mmol, 1.5 equiv), Cs2CO3 (0.74 mmol, 2.0 equiv), and KI (0.1 equiv) in MeCN (3 mL) was stirred at RT for 60–90 min in a laboratory ultrasonic bath (LABMAN Digital Ultrasonic Cleaner LMUC-6; 40 kHz ultrasound). The bath temperature was maintained by adding cold water from time to time when the temperature exceeded 28 °C. When the reaction was complete (TLC), the solvent was removed under a low vacuum and the solid residue was washed with H2O. The product was extracted with CH2Cl2 and the extracts were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude compound was purified by column chromatography (silica gel, EtOAc–hexane) to give a pale yellow solid; yield: 78%; mp 110–112 °C. IR (ATR): 2926, 2853, 1666, 1649, 1490, 1278, 1154, 1099, 1017, 749 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.52–8.28 (m, 1 H), 7.84–7.63 (m, 3 H), 7.50 (d, J = 8.5 Hz, 2 H), 7.25 (d, J = 9.2 Hz, 2 H), 7.16 (dd, J = 8.1, 2.8 Hz, 4 H), 5.39 (s, 2 H), 4.25 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 159.2, 148.8, 145.1, 136.1, 135.7, 133.1, 132.7, 131.4, 130.3 (2 C), 129.8 (2 C), 129.1, 128.8 (2 C), 128.4, 127.5, 124.9, 121.7, 121.0, 120.5 (q, J = 257.1 Hz), 53.8, 38.2. 19F NMR (377 MHz, CDCl3): δ = –57.68. HRMS (ESI): m/z [M + H]+ calcd for C23H17ClF3N2O2: 445.0931; found: 445.0932.