Synthesis 2022; 54(19): 4353-4360
DOI: 10.1055/a-1838-9491
paper

Iodine-Promoted N-Acylation of Amines with Hydrazide: An Efficient Metal-Free Amidation

Long Tian
,
Qianwei Zhang
,
We are grateful for financial support from the National Natural Science Foundation of China (Grant No. 21961038).


Abstract

An efficient protocol for the amidation of hydrazide with amine has been developed by utilizing I2 as an oxidant under metal- and base-free conditions at room temperature. N-Acylation products of amines were obtained in good to excellent yields without using toxic reagents. This method is operationally straightforward and tolerates aliphatic/aromatic and primary/secondary amines with different hydrazides.

Supporting Information



Publication History

Received: 10 March 2022

Accepted after revision: 28 April 2022

Accepted Manuscript online:
28 April 2022

Article published online:
08 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Alcaide B, Almendros P, Aragoncillo C. Chem. Rev. 2007; 107: 4437
    • 1b Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 1c Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 1d Wang X. Nat. Catal. 2019; 2: 98
    • 1e de Gasparo M, Whitebread S. Regul. Pept. 1995; 59: 303
  • 2 Fu L, Xu M, Yu J, Gutekunst WR. J. Am. Chem. Soc. 2019; 141: 2906
    • 3a Lanigan RM, Starkov P, Sheppard TD. J. Org. Chem. 2013; 78: 4512
    • 3b Gusev DG. ACS Catal. 2017; 7: 6656
    • 3c Ke Z, Yeung Y.-Y. Chem 2019; 5: 1014
    • 4a Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 4b Liu J, Parker MF. L, Wang S, Flavell RR, Toste FD, Wilson DM. Chem 2021; 7: 2245
    • 4c Zhang R, Yao W.-Z, Qian L, Sang W, Yuan Y, Du M.-C, Cheng H, Chen C, Qin X. Green Chem. 2021; 23: 3972
  • 5 Jiang D, He T, Ma L, Wang Z. RSC Adv. 2014; 4: 64936
  • 6 Overman LE. J. Am. Chem. Soc. 1974; 96: 597
  • 7 Aube J, Milligan GL. J. Am. Chem. Soc. 1991; 113: 8965
  • 8 Arisawa M, Yamaguchi M. Org. Lett. 2001; 3: 311
    • 9a Fang X, Li H, Jackstell R, Beller M. J. Am. Chem. Soc. 2014; 136: 16039
    • 9b Feng F.-F, Liu X.-Y, Cheung CW, Ma J.-A. ACS Catal. 2021; 11: 7070
    • 10a Wang P, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 17045
    • 10b Movassaghi M, Schmidt MA. Org. Lett. 2005; 7: 2453
    • 10c Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
    • 10d De Sarkar S, Studer A. Org. Lett. 2010; 12: 1992
    • 10e Xu W.-T, Huang B, Dai J.-J, Xu J, Xu H.-J. Org. Lett. 2016; 18: 3114
    • 10f De Benneville PL, Levesque CL, Exner LJ, Hertz E. J. Org. Chem. 1956; 21: 1072
    • 10g Li X, Yuan Y, Berkowitz WF, Todaro LJ, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 13222
    • 10h Shangguan N, Katukojvala S, Greenberg R, Williams LJ. J. Am. Chem. Soc. 2003; 125: 7754
    • 10i Crich D, Sana K, Guo S. Org. Lett. 2007; 9: 4423
  • 11 Guo Y, Wang R.-Y, Kang J.-X, Ma Y.-N, Xu C.-Q, Li J, Chen X. Nat. Commun. 2021; 12: 5964
  • 12 Wang Y.-J, Zhang G.-Y, Shoberu A, Zou J.-P. Tetrahedron Lett. 2021; 80: 153316
  • 13 Miao Y.-Q, Kang J.-X, Ma Y.-N, Chen X. Green Chem. 2021; 23: 3595
  • 14 Li Z, Wang C, Wang Y, Yuan D, Yao Y. J. Org. Chem. 2021; 86: 9067
  • 15 Fu Z, Wang X, Tao S, Bu Q, Wei D, Liu N. J. Org. Chem. 2021; 86: 2339
    • 16a Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Chem. Commun. 2020; 56: 1393
    • 16b Zhai S, Qiu S, Chen X, Tao C, Li Y, Cheng B, Wang H, Zhai H. ACS Catal. 2018; 8: 6645
    • 16c Mei R, Sauermann N, Oliveira JC. A, Ackermann L. J. Am. Chem. Soc. 2018; 140: 7913
    • 16d Flood DT, Hintzen JC. J, Bird MJ, Cistrone PA, Chen JS, Dawson PE. Angew. Chem. Int. Ed. 2018; 57: 11634
    • 16e Yang P, Zhang C, Ma Y, Zhang C, Li A, Tang B, Zhou JS. Angew. Chem. Int. Ed. 2017; 56: 14702
    • 17a Rosenbaum C, Waldmann H. Tetrahedron Lett. 2001; 42: 5677
    • 17b Devi J, Saikia N, Choudhury G, Deka DC. Tetrahedron Lett. 2021; 65: 152753
    • 17c Yan Y, Zhang Z, Wan Y, Zhang G, Ma N, Liu Q. J. Org. Chem. 2017; 82: 7957
    • 17d Yang K, Ke M, Lin Y, Song Q. Green Chem. 2015; 17: 1395
    • 17e Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi H. Angew. Chem. Int. Ed. 2010; 49: 10154
    • 17f Pan C, Han J, Zhang H, Zhu C. J. Org. Chem. 2014; 79: 5374
    • 18a Ge W, Zhu X, Wei Y. Adv. Synth. Catal. 2013; 355: 3014
    • 18b Liu M, Chen T, Zhou Y, Yin S.-F. Catal. Sci. Technol. 2016; 6: 5792
    • 18c Zhao J, Huang H, Wu W, Chen H, Jiang H. Org. Lett. 2013; 15: 2604
    • 18d Zhang Q, Wang B, Ma H, Ablajan K. New J. Chem. 2019; 43: 17000
  • 19 Wang S.-M, Zhao C, Zhang X, Qin H.-L. Org. Biomol. Chem. 2019; 17: 4087
  • 20 Ben Halima T, Vandavasi JK, Shkoor M, Newman SG. ACS Catal. 2017; 7: 2176
  • 21 Katkar KV, Chaudhari PS, Akamanchi KG. Green Chem. 2011; 13: 835
  • 22 Li Z, Wang C, Wang Y, Yuan D, Yao Y. Asian J. Org. Chem. 2018; 7: 810
  • 23 Katritzky AR, Cai C, Singh SK. J. Org. Chem. 2006; 71: 3375
  • 24 Pandey G, Koley S, Talukdar R, Sahani PK. Org. Lett. 2018; 20: 5861
  • 25 Xie L.-G, Dixon DJ. Nat. Commun. 2018; 9: 2841
  • 26 Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
  • 27 Sen A, Dhital RN, Sato T, Ohno A, Yamada YM. A. ACS Catal. 2020; 10: 14410
  • 28 Li Z, Wang C, Wang Y, Yuan D, Yao Y. Asian J. Org. Chem. 2018; 7: 810
  • 29 Zhang Z, Yu Y, Liebeskind LS. Org. Lett. 2008; 10: 3005
  • 30 Wu J.-W, Wu Y.-D, Dai J.-J, Xu H.-J. Adv. Synth. Catal. 2014; 356: 2429
  • 31 Schmidt J, Rotter M, Weiser T, Wittmann S, Weizel L, Kaiser A, Heering J, Goebel T, Angioni C, Wurglics M, Paulke A, Geisslinger G, Kahnt A, Steinhilber D, Proschak E, Merk D. J. Med. Chem. 2017; 60: 7703
  • 32 Zhang W, Lu Y. J. Comb. Chem. 2006; 8: 890
  • 33 Hong WP, Tran VH, Kim H.-K. RSC Adv. 2021; 11: 15890
  • 34 Li G, Ji C.-L, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
  • 35 Tandon N, Patil SM, Tandon R, Kumar P. RSC Adv. 2021; 11: 21291