RSS-Feed abonnieren
DOI: 10.1055/a-1835-2188
The Reaction of Ketoximes with Hypervalent Iodine Reagents: Beckmann Rearrangement and Hydrolysis to Ketones
This work was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 19K16329 and 18K05132, and also supported by a 2021 Kindai University Research Enhancement Grant (KD2106).
Abstract
We investigated the reaction of ketoximes with hypervalent iodine reagents. A combination of PhI(OAc)2 and BF3·Et2O promoted the Beckmann rearrangement of ketoximes, thus yielding the corresponding amides. From a detailed investigation of the reaction, we determined that the Beckmann rearrangement is preceded by acetylation of the hydroxy group of the ketoxime in situ, accelerating the Beckmann rearrangement. We confirmed that the acetylated ketoxime undergoes the Beckmann rearrangement with BF3·Et2O. The reaction of ketoximes with Koser’s reagent [PhI(OH)OTs] in the presence of tetrahydrofuran results in hydrolysis, affording the corresponding ketones in high yields at room temperature.
Key words
ketoximes - hypervalent iodine reagents - Beckmann rearrangement - hydrolysis - amides - ketonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1835-2188
- Supporting Information
Publikationsverlauf
Eingereicht: 12. März 2022
Angenommen nach Revision: 26. April 2022
Accepted Manuscript online:
26. April 2022
Artikel online veröffentlicht:
08. Juni 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Wuts PG. M. Greene’s Protective Groups in Organic Synthesis, 5th ed. John Wiley & Sons, Inc; Hoboken, NJ: 2014: 661
- 2a Craig D. The Beckmann and Related Reactions . In Comprehensive Organic Synthesis, Vol. 7. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 689-702
- 2b Gawley RE. Org. React. 1988; 35: 1
- 3a Ghiaci M, Imanzadeh GH. Synth. Commun. 1998; 28: 2275
- 3b Thomas B, Sugunan S. Microporous Mesoporous Mater. 2006; 96: 55
- 3c Sugamoto K, Matsushita Y, Matsui T. Synth. Commun. 2011; 41: 879
- 3d An N, Pi H, Liu L, Du W, Deng W. Chin. J. Chem. 2011; 29: 947
- 4a Hypervalent Iodine Chemistry. Modern Developments in Organic Synthesis. In Topics in Current Chemistry, Vol. 224. Wirth T. Springer; Berlin: 2003
-
4b
Tohma H,
Kita Y.
Adv. Synth. Catal. 2004; 346: 111
- 4c Moriarty RM. J. Org. Chem. 2005; 70: 2893
- 4d Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 4e Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 4f Ochiai M. Synlett 2009; 159
- 4g Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 4h Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 4i Merritt EA, Olofsson B. Synthesis 2011; 517
-
4j
Silva LF,
Olofsson B.
Nat. Prod. Rep. 2011; 28: 1722
-
4k
Yoshimura A,
Zhdankin VV.
Chem. Rev. 2016; 116: 3328
- 4l Hypervalent Iodine Chemistry. In Topics in Current Chemistry, Vol. 373. Wirth T. Springer; Switzerland: 2016
- 5 Nakamura A, Kanou H, Tanaka J, Imamiya A, Maegawa T, Miki Y. Org. Biomol. Chem. 2018; 16: 541
- 6 Oishi R, Segi K, Hamamoto H, Nakamura A, Maegawa T, Miki Y. Synlett 2018; 29: 1465
- 7a Hamamoto H, Umemoto H, Umemoto M, Ohta C, Doshita M, Miki Y. Synlett 2010; 2593
- 7b Hamamoto H, Hattori S, Takemaru K, Miki Y. Synlett 2011; 1563
- 7c Miki Y, Umemoto H, Doshita M, Hamamoto H. Tetrahedron Lett. 2012; 53: 1924
- 7d Hamamoto H, Umemoto H, Umemoto M, Ohta C, Fujita E, Nakamura A, Maegawa T, Miki Y. Heterocycles 2015; 91: 561
- 7e Nakamura A, Tanaka S, Imamiya A, Takane R, Ohta C, Fujimura K, Maegawa T, Miki Y. Org. Biomol. Chem. 2017; 15: 6702
- 7f Shibata A, Kitamoto S, Fujimura K, Hirose Y, Hamamoto H, Nakamura A, Miki Y, Maegawa T. Synlett 2018; 29: 2275
- 7g Nakamura A, Takane R, Tanaka J, Morimoto J, Maegawa T. Heterocycles 2018; 97: 785
- 8 Moriarty RM, Prakash O, Vavilikolanu PR. Synth. Commun. 1986; 16: 1247
- 9 Torisawa Y, Nishi T, Minamikawa J. Bioorg. Med. Chem. 2003; 11: 2205
- 10 Izquierdo S, Essafi S, Rosal I, Vidossich P, Pleixats R, Vallribera A, Ujaque G, Lledós A, Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
- 11 Prakash GK. S, Moran MD, Mathew T, Olah GA. J. Fluorine Chem. 2009; 130: 806
- 12 Dooleweerdt K, Fors BP, Buchwald SL. Org. Lett. 2010; 12: 2350
- 13 Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
- 14 Roy S, Gribble GW. Heterocycles 2006; 70: 51
- 15 Sakai N, Moriya T, Konohara T. J. Org. Chem. 2007; 72: 5920
- 16 Wang Y, Zhu D, Tang L, Wang S, Wang Z. Angew. Chem. Int. Ed. 2011; 50: 8917
- 17 Liu S, Yu Y, Liebeskind LS. Org. Lett. 2007; 9: 1947
- 18 Witosiñska A, Musielak B, Serda P, Owiñska M, Rys B. J. Org. Chem. 2012; 77: 9784
- 19 Huang K, Li S, Chang M, Zhang X. Org. Lett. 2013; 15: 484
- 20 Muthaiah S, Hong SH. Adv. Synth. Catal. 2012; 354: 3045
- 21 Moriyama K, Takemura M, Togo H. J. Org. Chem. 2014; 79: 6094
- 22 Chudinov YB, Gashev SB, Firgang SI, Semenov VV. Russ. Chem. Bull. 2007; 56: 1612
- 23 Fernandes RA, Bethi V. RSC Adv. 2014; 4: 40561
- 24 Ou-yang J, Zhang W, Qin F, Zuo Q, Xu S, Wang Y, Qin B, You S, Jia X. Org. Biomol. Chem. 2017; 15: 7374
For reviews see: