Synthesis 2022; 54(18): 4120-4128
DOI: 10.1055/a-1823-3604
paper

Synthesis of Sulfonyl Halides from Disulfides or Thiols Using Sodium Hypochlorite Pentahydrate (NaOCl·5H2O) Crystals

a   Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
,
Sho Yamahara
a   Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
,
Tomohide Okada
b   Market Development Department, Nippon Light Metal Company, Ltd., 1–1–13 Shimbashi, Minato–ku, Tokyo 105–8681, Japan
,
Hiroaki Matsumuro
a   Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
,
Yukari Kinoshita
a   Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
,
Atsuhito Kitajima
a   Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
,
Yuya Takamura
a   Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
,
Tatsuya Odagiri
c   R & D Department of Chemicals, Nippon Light Metal Company, Ltd., 161 Kambara, Shimizu–ku, Shizuoka 421–3203, Japan
,
Tomotake Asawa
d   Quality Assurance Section, Nippon Light Metal Company, Ltd., 161 Kambara, Shimizu–ku, Shizuoka 421–3203, Japan
,
Yukihiro Sugiyama
e   Nippon Electrode Co. Ltd., 5600 Kambara, Shimizu–ku, Shizuoka 421–3203, Japan
,
f   Research and Development Department, Iharanikkei Chemical Industry Co. Ltd., 5700–1 Kambara, Shimizu–ku, Shizuoka 421–3203, Japan
› Author Affiliations
This study was supported by the Tokai Foundation of Technology.


Abstract

Synthesis of sulfonyl halides using sodium hypochlorite pentahydrate (NaOCl·5H2O) crystals was studied in detail, considering the reaction rate and yield of the desired product. NaOCl·5H2O reacted with disulfides or thiols in acetic acid to produce sulfonyl chlorides. The yields of the desired sulfonyl chlorides were enhanced when the reaction was performed in (trifluoromethyl)benzene under a CO2 atmosphere. The generation of hypochlorous acid (HOCl) was essential for both reactions. Similarly, sulfonyl bromides were prepared via the reaction of disulfides or thiols with sodium bromide and NaOCl·5H2O crystals in acetic acid owing to the generation of hypobromous acid (HOBr). However, the reaction could not proceed in (trifluoromethyl)benzene under a CO2 atmosphere because bromine was produced instead of HOBr.



Publication History

Received: 18 March 2022

Accepted after revision: 12 April 2022

Accepted Manuscript online:
12 April 2022

Article published online:
31 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Douglass IB, Farah BS. J. Org. Chem. 1958; 23: 330
    • 1b Douglass IB, Farah BS, Thomas EG. J. Org. Chem. 1961; 26: 1996
  • 2 Watson RJ, Batty D, Baxter AD, Hannah DR, Owen DA, Montana JG. Tetrahedron Lett. 2002; 43: 683
    • 3a Park YJ, Shin HH, Kim YH. Chem. Lett. 1992; 1483
    • 3b Gareau Y, Pellicelli J, Laliberté S, Gauvreau D. Tetrahedron Lett. 2003; 44: 7821
  • 4 Meinzer A, Breckel A, Thaher BA, Manicone N, Otto H.-H. Helv. Chim. Acta 2004; 87: 90
  • 5 Nishiguchi A, Maeda K, Miki S. Synthesis 2006; 4131
  • 6 Bahrami K, Khodaei MM, Soheilizada M. Synlett 2009; 2773
  • 7 Humljan J, Gobec S. Tetrahedon Lett. 2005; 46: 4069
    • 8a Reddie RN. Synth. Commun. 1987; 17: 1129
    • 8b Kvaernø L, Werder M, Hauser H, Carreira EM. Org. Lett. 2005; 7: 1145
  • 9 Prakash GK. S, Mathew T, Panja C, Olah GA. J. Org. Chem. 2007; 72: 5847
  • 10 Veisi H, Sedrpoushan A, Hemmati S, Kordestani D. Phosphorus, Sulfur, Silicon Relat. Elem. 2012; 187, 769
  • 11 Veisi H, Ghorbani-Vaghei R, Hemmati S, Mahmoodi J. Synlett 2011; 2315
  • 12 Kirihara M, Naito S, Nishimura Y, Ishizuka Y, Iwai T, Takeuchi H, Ogata T, Hanai H, Kinoshita Y, Kishida M, Yamazaki K, Noguchi T, Yamashoji S. Tetrahedron 2014; 70: 2464
  • 13 Silva-Cuevas C, Perez-Arrieta C, Polindara-García LA, Lujan-Montelongo JA. Tetrahedron Lett. 2017; 58: 2244
  • 14 Jereb M, Hribernik L. Green Chem. 2017; 19: 2286
  • 15 Madabhushi S, Jillella R, Sriramoju V, Singh R. Green Chem. 2014; 16: 3125
  • 16 Okada T, Matsumuro H, Iwai T, Kitagawa S, Yamazaki T, Akiyama K, Asawa T, Sugiyama Y, Kimura Y, Kirihara M. Chem. Lett. 2015; 44: 185
    • 17a Kirihara M, Okada T, Asawa T, Sugiyama Y, Kimura Y. J. Synth. Org. Chem. Jpn. 2020; 78: 11
    • 17b Kirihara M, Okada T, Sugiyama Y, Akiyoshi M, Matsunaga T, Kimura Y. Org. Process Res. Dev. 2017; 21: 1925
    • 17c Kirihara M, Osugi R, Saito K, Adachi K, Yamazaki K, Matsushima R, Kimura Y. J. Org. Chem. 2019; 84: 8330
    • 17d Hakuto N, Saito K, Kirihara M, Kotsuchibashi Y. Polym. Chem. 2020; 11: 2469
    • 17e Kirihara M, Suzuki K, Nakakura K, Saito K, Nakamura R, Tujimoto K, Sakamoto Y, Kikkawa Y, Shimazu H, Kimura Y. J. Fluorine Chem. 2021; 243: 109719
    • 17f Kirihara M, Adachi K, Sakamoto Y, Tujimoto K, Yamahara S, Matsushima R, Namba Y, Sato K, Kamada T, Kimura Y, Takizawa S. Heterocycles 2021; 103: 699

      Synthetic reactions using NaOCl·5H2O recently developed by other groups:
    • 18a Miller SA, Bisset KA, Leadbeater NE, Eddya NA. Eur. J. Org. Chem. 2019; 1413
    • 18b Porcheddu A, Delogu F, De Luca LD, Fattuoni C, Colacino E. Beilstein J. Org. Chem. 2019; 15: 1786
    • 18c Uyanik M, Nishioka K, Kondo R, Ishihara K. Nat. Chem. 2020; 12: 353
    • 18d Zhu Y, Wang J, Wu D, Yu W. Asian J. Org. Chem. 2020; 9: 1650
    • 18e Matsuki S, Kayano H, Takada J, Kono H, Fujisawa S, Saito T, Isogai A. ACS Sustain. Chem. Eng. 2020; 8: 17800
    • 18f Umeda T, Minakata S. RSC Adv. 2021; 11: 22120
  • 19 Miyamoto K, Okada T, Toyama T, Imamura S, Uchiyama M. Heterocycles 2021; 103: 694
  • 20 Ahluwalia VK, Parashar RK. Organic Reaction Mechanisms, 2nd ed. Alpha Science International Ltd; Oxford: 2005: 4
  • 21 Toth JE, Collins EA. e-EROS Encyclopedia of Reagents for Organic Synthesis, p-toluenesulfonyl bromide 2004; DOI: 10.1002/047084289X.rn00458.2.
    • 22a Lukashevich VO. Dokl. Akad. Nauk SSSR 1955; 103: 627
    • 22b Poshkus AC, Herweh JE, Magnotta FA. J. Org. Chem. 1963; 28: 2766
    • 22c Litvinenko LM, Dadali VA, Savelova VA, Krichevtsova TI. Zh. Obshch. Khim. 1964; 34: 3730
    • 22d Prinsen AJ, Cerfontain H. Recl. Trav. Chim. Pays-Bas 1965; 84: 24
    • 22e Whitmore FC, Thurman N. J. Am. Chem. Soc. 1923; 45: 1068
    • 23a Ogata Y, Kimura M. J. Synth. Org. Chem. Jpn. 1979; 37: 58
    • 23b Lee GA, Freedman HH. Tetrahedron Lett. 1976; 17: 1641
    • 23c Bright ZR, Luyeye CR, Morton AS, Sedenko M, Landolt RG, Bronzi MJ, Bohovic KM, Gonser MW, Lapainis TE, Hendrickson WH. J. Org. Chem. 2005; 70: 684
  • 24 Although the desired 3a was obtained in high yields from the reaction of 1a with 5.0 equiv of NaOCl·5H2O in acetic acid, a small amount of the corresponding thiosulfonate was accompanied. Over 6.5 equiv of NaOCl·H2O were required to obtain 3a in a pure form.
  • 25 Although the desired 3a was obtained in high yields from the reaction of 1a with 5.0 or 6.5 equiv of NaOCl·5H2O in BTF under CO2 atmosphere, small amounts of the starting material 1a and/or the corresponding thiosulfonate were accompanied (Scheme 9). In order to obtain 3a in a pure form, over 8 equiv of NaOCl·5H2O were required.
  • 26 Harrelson L, Howarth J, Mesrobian C, Shaver T. Official Proceeding - 72nd International Water Conference 2011; 638
  • 27 Br2 has been known as the reagent for preparation of disulfides from thiols: Ali, M. H.; McDermott, M. Tetrahedron Lett. 2002, 43, 6271; and references cited therein
  • 28 Maslankiewicz A, Marciniec K, Pawlowski M, Zajdel P. Heterocycles 2007; 71: 1975