Synthesis 2022; 54(18): 4104-4110
DOI: 10.1055/a-1817-2079
paper

Copper-Catalyzed C–S Formation for the Synthesis of Benzyl Phenyl Sulfides from Dithiocarbamates

Yu Zhou
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Cheng-Li Yang
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Lei Ye
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
,
Zhi-Bing Dong
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
b   Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, P. R. of China
c   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. of China
d   Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
e   Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
› Author Affiliations
The financial support from the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (2020ZD02), Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University (PT012101), State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2021-06), and the Innovation Fund of Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology (GCX202102) is greatly appreciated.


Dedicated to the 50th anniversary celebration of Wuhan Institute of Technology

Abstract

An odorless and efficient protocol for the synthesis of benzyl phenyl sulfides is reported. Starting from environmentally friendly phenyl dithiocarbamates and commercially available benzyl halides as starting materials, the target compounds (benzyl phenyl sulfides) could be obtained smoothly and easily by using copper salt as catalyst and Cs2CO3 as base. This method features ligand/additive-free, the use of readily available starting materials, inexpensive catalysts, and good substrate suitability, illustrating its potentially synthetic value for the convenient preparation of some biologically active molecules.

Supporting Information



Publication History

Received: 13 March 2022

Accepted after revision: 03 April 2022

Accepted Manuscript online:
05 April 2022

Article published online:
19 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Shen C, Zhang P, Sun Q, Bai S, Hor TS, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 1b Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13
    • 1c Lee CF, Liu YC, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 1d Mondal J, Modak A, Dutta A, Basu S, Jha SN, Bhattacharyya D, Bhaumik A. Chem. Commun. 2012; 48: 8000
    • 1e Li J, Yang S, Wu W, Jiang H. Org. Chem. Front. 2020; 7: 1395
    • 2a Daengrot C, Rukachaisirikul V, Tansakul C, Thongpanchang T, Phongpaichit S, Bowornwiriyapan K, Sakayaroj J. J. Nat. Prod. 2015; 78: 615
    • 2b Fang Z, Jiang X, Zhang Q, Zhang L, Zhang W, Yang C, Zhang H, Zhu Y, Zhang C. J. Nat. Prod. 2020; 83: 3122
    • 3a Priebbenow DL, Mathiew M, Shi DH, Harjani JR, Beveridge JG, Chavchich M, Edstein MD, Duffy S, Avery VM, Jacobs RT, Brand S, Shackleford DM, Wang W, Zhong L, Lee G, Tay E, Barker H, Crighton E, White KL, Charman SA, De Paoli A, Creek DJ, Baell JB. J. Med. Chem. 2021; 64: 4150
    • 3b Xue L, Shi DH, Harjani JR, Huang F, Beveridge JG, Dingjan T, Ban K, Diab S, Duffy S, Lucantoni L, Fletcher S, Chiu FC. K, Blundell S, Ellis K, Ralph SA, Wirjanata G, Teguh S, Noviyanti R, Chavchich M, Creek D, Price RN, Marfurt J, Charman SA, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Edstein MD, Avery VM, Baell JB. J. Med. Chem. 2019; 62: 2485
  • 4 Karaman İ, Gezegen H, Ceylan M, Dilmaç M. Phosphorus, Sulfur, Silicon Relat. Elem. 2012; 187: 580
  • 5 Thevissen K, Pellens K, De Brucker K, Francois IE, Chow KK, Meert EM, Meert W, Van Minnebruggen G, Borgers M, Vroome V, Levin J, De Vos D, Maes L, Cos P, Cammue BP. Bioorg. Med. Chem. Lett. 2011; 21: 3686
  • 6 Fujiu M, Yokoo K, Sato J, Shibuya S, Komano K, Kusano H, Sato S, Aoki T, Kohira N, Kanazawa S, Watari R, Kawachi T, Hirakawa Y, Nagamatsu D, Kashiwagi E, Maki H, Yamawaki K. J. Med. Chem. 2021; 64: 9496
  • 7 Jones AC, Nicholson WI, Smallman HR, Browne DL. Org. Lett. 2020; 22: 7433
  • 8 Alinezhad H, Ghasemi S, Cheraghian M. J. Organomet. Chem. 2019; 898: 120867
    • 9a Khodaei MM, Bahrami K, Meibodi FS. Appl. Organomet. Chem. 2017; 31: e3714
    • 9b Thomas AM, Sherin DR, Asha S, Manojkumar TK, Anilkumar G. Polyhedron 2020; 176: 114269
    • 9c Uyeda C, Tan Y, Fu GC, Peters JC. J. Am. Chem. Soc. 2013; 135: 9548
    • 9d Dubey AV, Gharat SB, Vijay Kumar A. ChemistrySelect 2017; 2: 4852
    • 10a Kovacs S, Novak Z. Org. Biomol. Chem. 2011; 9: 711
    • 10b Wu W.-Y, Wang J.-C, Tsai F.-Y. Green Chem. 2009; 11: 326
    • 10c Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 11a Li NB, Yao J, Wang LX, Wei JC, Liu W, Liu WQ, Xu XH, Liang ZW. Inorg. Chem. Commun. 2018; 98: 99
    • 11b Banerjee S, Adak L, Ranu BC. Tetrahedron Lett. 2012; 53: 2149
  • 12 Guo SR, He WM, Xiang JN, Yuan YQ. Chem. Commun. 2014; 50: 8578
  • 13 Firouzabadi H, Iranpoor N, Samadi A. Tetrahedron Lett. 2014; 55: 1212
    • 14a Gholinejad M, Karimi B, Mansouri F. J. Mol. Catal. A: Chem. 2014; 386: 20
    • 14b Firouzabadi H, Iranpoor N, Gholinejad M, Samadi A. J. Mol. Catal. A: Chem. 2013; 377: 190
    • 14c Firouzabadi H, Iranpoor N, Gholinejad M. Adv. Synth. Catal. 2010; 352: 119
    • 15a Rostami A, Rostami A, Ghaderi A. J. Org. Chem. 2015; 80: 8694
    • 15b Zhang YH, Li YM, Zhang XM, Jiang XF. Chem. Commun. 2015; 51: 941
    • 16a Boas U, Gertz H, Christensen JB, Heegaard PM. H. Tetrahedron Lett. 2004; 45: 269
    • 16b Bala V. Synlett 2014; 25: 746
    • 16c Jiao J, Wei L, Ji XM, Hu ML, Tang RY. Adv. Synth. Catal. 2016; 358: 268
    • 17a Dong ZB, Wu YX, Peng K, Li JH. Synthesis 2020; 52: 3001
    • 17b Dong ZB, Liu X, Bolm C. Org. Lett. 2017; 19: 5916
    • 17c Xu W, Gao F, Dong ZB. Eur. J. Org. Chem. 2018; 821
    • 17d Peng K, Zhu H, Liu X, Peng HY, Chen JQ, Dong ZB. Eur. J. Org. Chem. 2019; 7629
    • 18a Zhang Y, Li Y, Zhang X, Jiang X. Chem. Commun. 2015; 51: 941
    • 18b Reeves JT, Camara K, Han ZS, Xu Y, Lee H, Busacca CA, Senanayake CH. Org. Lett. 2014; 16: 1196
    • 18c Schwab RS, Singh D, Alberto EE, Piquini P, Rodrigues OE. D, Braga AL. Catal. Sci. Technol. 2011; 1: 569
    • 18d Pan X, Curran DP. Org. Lett. 2014; 16: 2728
    • 18e Liu T, Qiu R, Zhu L, Yin SF, Au CT, Kambe N. Chem. Asian J. 2018; 13: 3833
    • 18f Sorribes I, Corma A. Chem. Sci. 2019; 10: 3130
    • 18g O’Mahony GE, Ford A, Maguire AR. J. Org. Chem. 2012; 77: 3288
    • 18h Pramanik M, Choudhuri K, Mathuri A, Mal P. Chem. Commun. 2020; 56: 10211
    • 18i Sahoo SK. J. Chem. Sci. (Bangalore, India) 2015; 127: 2151
    • 18j Zhao X, Zheng X, Yang B, Sheng J, Lu K. Org. Biomol. Chem. 2018; 16: 1200
    • 18k Kabir MS, Lorenz M, Van Linn ML, Namjoshi OA, Ara S, Cook JM. J. Org. Chem. 2010; 75: 3626
    • 18l Xu HJ, Liang YF, Zhou XF, Feng YS. Org. Biomol. Chem. 2012; 10: 2562
    • 18m Li Y, Pu J, Jiang X. Org. Lett. 2014; 16: 2692
    • 18n Gholinejad M. Eur. J. Org. Chem. 2015; 4162