Synlett 2022; 33(10): 969-972
DOI: 10.1055/a-1804-7546
letter

Rh(III)-Catalyzed Synthesis of 2-Nitro-2H-azirines via sp3 C–H Activation

Xiaojun Huang
a   College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yun Ge
b   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yang Qian
c   College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Zhengyu Zhang
c   College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. of China
› Author Affiliations
The authors gratefully acknowledge funding from Jiangsu Students’ Platform for Innovation and Entrepreneurship Training Program and the Starting Funding of Research from Nanjing Tech University.


Abstract

An expedient Rh(III)-catalytic method has been described to synthesis of 2-nitro-2H-azirine derivatives from easily accessible β-nitrooxime ethers via sp3 C–H activation process. This protocol features of low catalyst loading, very mild reaction conditions, and tolerating a diverse of functionalities in good yields. A possible reaction pathway is proposed involving [RhCp*Cl2]2-catalyzed sp3 C–H bond activation and pivalic acid elimination steps.

Supporting Information



Publication History

Received: 14 February 2022

Accepted after revision: 22 March 2022

Accepted Manuscript online:
22 March 2022

Article published online:
10 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 1b Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 1c Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 1d Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 1
    • 1e Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 1f Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 1g Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
    • 1h Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
    • 1i Achar T, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
    • 2a Burman JS, Harris RJ, Farr CM. B, Bacsa J, Blakey SB. ACS Catal. 2019; 9: 5474
    • 2b Harris RJ, Park J, Nelson TA. F, Iqbal N, Salgueiro DC, Bacsa J, MacBeth CE, Baik M.-H, Blakey SB. J. Am. Chem. Soc. 2020; 142: 5842
    • 2c Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 2d Liu Y, Yang Y, Wang C, Wang Z, You J. Chem. Commun. 2019; 55: 1068
    • 2e Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 2f Liu B, Song C, Sun C, Zhou S, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
    • 3a Si T, Kim HY, Oh K. J. Org. Chem. 2021; 86: 1152
    • 3b Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 3c Huckins JR, Bercot EA, Thiel OR, Hwang T.-L, Bio MM. J. Am. Chem. Soc. 2013; 135: 14492
    • 4a Sujatha C, Nallagangula M, Namitharan K. Org. Lett. 2021; 23: 4219
    • 4b Palacios F, Retana AM. O, de Marigorta EM, de los Santos JM. Eur. J. Org. Chem. 2001; 2401
    • 4c Chen Y.-J, Zhang F.-G, Ma J.-A. Org. Lett. 2021; 23: 6062
    • 5a Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 218326
    • 5b Zhao D, Shi Z, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
    • 5c Sherikar MS, Devarajappa R, Prabhu KR. J. Org. Chem. 2021; 86: 4625
    • 6a Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 6b Tan X, Liu B, Li X, Li B, Xu S, Song H, Wang B. J. Am. Chem. Soc. 2012; 134: 16163
    • 6c Liu B, Zhou T, Li B, Xu S, Song H, Wang B. Angew. Chem. Int. Ed. 2014; 53: 4191
    • 6d Wang N, Li R, Li L, Xu S, Song H, Wang B. J. Org. Chem. 2014; 79: 5379
    • 6e Chen X, Xie Y, Xiao X, Li G, Deng Y, Jiang H, Zeng W. Chem. Commun. 2015; 51: 15328
    • 6f Hou W, Yang Y, Wu Y, Feng H, Li Y, Zhou B. Chem. Commun. 2016; 52: 9672
    • 6g Ghosh B, Bera S, Ghosh P, Samanta R. Chem. Commun. 2021; 57: 13134
  • 7 Neber PW, Burgard A. Justus Liebigs Ann. Chem. 1932; 493: 281
    • 8a Okamoto K, Shimbayashi T, Yoshida M, Nanya A, Ohe K. Angew. Chem. Int. Ed. 2016; 55: 7199
    • 8b Rieckhoff S, Titze M, Frey W, Peters R. Org. Lett. 2017; 19: 4436
    • 8c Okamoto K, Nanya A, Eguchi A, Ohe K. Angew. Chem. Int. Ed. 2018; 57: 1039
    • 8d Qi X, Jiang Y, Park C.-M. Chem. Commun. 2011; 47: 7848
    • 9a Khumtaveeporn K, Alper H. Acc. Chem. Res. 1995; 28: 414
    • 9b Palacios F, de Retana AM. O, de Marigorta EM, de los Santos JM. Eur. J. Org. Chem. 2001; 2401
    • 9c Khlebnikov AF, Novikov MS. Tetrahedron 2013; 69: 3363
    • 9d Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653
    • 9e Jiang Y, Park C.-M, Loh T.-P. Org. Lett. 2014; 16: 3432
    • 9f Chen Y, Yang W, Wu J, Sun W, Loh T.-P, Jiang Y. Org. Lett. 2020; 22: 2038
    • 9g Pokhriyal A, Karki BS, Kant R, Rastogi N. J. Org. Chem. 2021; 86: 4661
  • 10 Ge Y, Sun W, Pei B, Ding J, Jiang Y, Loh T.-P. Org. Lett. 2018; 20: 2774
  • 11 Shin C, Yonezawa Y, Suzuki K, Yoshimura J. Bull. Chem. Soc. Jpn. 1978; 51: 2614
    • 12a Kazuhiro O, Takuya S, Masato Y, Atsushi N, Kouichi O. Angew. Chem. Int. Ed. 2016; 55: 7199
    • 12b Rieckhoff S, Titze M, Frey W, Peters R. Org. Lett. 2017; 19: 4436