Synlett 2022; 33(09): 890-892
DOI: 10.1055/a-1799-7517
cluster
Mechanochemistry

Stereoelectronic Effects in Force-Accelerated Retro-Diels–Alder Reactions

Lik Chun Wu
,
G.D.B. is a Royal Society University Research Fellow.


Abstract

In polymer mechanochemistry, mechanosensitive molecules (mechanophores) are activated upon elongation of anchored polymer arms. The reactivity of a mechanophore can be influenced by a variety of structural factors, including the geometry of attachment of the polymer arms and the nature of eventual substituents. Here we investigate stereoelectronic effects in force-accelerated Diels–Alder reactions using the CoGEF (Constrained Geometries simulate External Force) calculation method. We found that the presence of an electron-donating heteroatom on the diene leads to a lower activation force, and that the mechanochemical reactivity is suppressed when the anchor group is attached to a central rather than lateral position.

Supporting Information



Publication History

Received: 05 February 2022

Accepted after revision: 15 March 2022

Publication Date:
15 March 2022 (online)

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a O’Neill RT, Boulatov R. Nat. Rev. Chem. 2021; 5: 148
    • 1b De Bo G. Macromolecules 2020; 53: 7615
    • 1c Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS. Chem. Rev. 2009; 109: 5755
  • 2 Stevenson R, De Bo G. J. Am. Chem. Soc. 2017; 139: 16768
    • 3a Noh J, Peterson GI, Choi T. Angew. Chem. Int. Ed. 2021; 60: 18651
    • 3b Peterson GI, Lee J, Choi T.-L. Macromolecules 2019; 52: 9561
    • 3c Lin Y, Zhang Y, Wang Z, Craig SL. J. Am. Chem. Soc. 2019; 141: 10943
    • 3d Church DC, Peterson GI, Boydston AJ. ACS Macro Lett. 2014; 3: 648
    • 3e Zhang H, Diesendruck C. Angew. Chem. Int. Ed. 2022; 61: e202115325 DOI: 10.1002/anie.202115325.
    • 4a Stevenson R, Zhang M, De Bo G. Polym. Chem. 2020; 11: 2864
    • 4b Wang J, Kouznetsova TB, Kean ZS, Fan L, Mar BD, Martinez TJ, Craig SL. A. J. Am. Chem. Soc. 2014; 136: 15162
    • 4c Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL. A. Nat. Chem. 2013; 5: 110
    • 4d Tian Y, Boulatov R. ChemPhysChem 2012; 13: 2277
    • 4e Klukovich HM, Kean ZS, Ramirez AL. B, Lenhardt JM, Lin J, Hu X, Craig SL. J. Am. Chem. Soc. 2012; 134: 9577
    • 5a Brown CL, Bowser BH, Meisner J, Kouznetsova TB, Seritan S, Martinez TJ, Craig SL. J. Am. Chem. Soc. 2021; 143: 3846
    • 5b Nixon R, De Bo G. Nat. Chem. 2020; 12: 826
    • 5c Lin Y, Craig SL. Chem. Sci. 2020; 11: 10444
    • 5d Barbee MH, Kouznetsova T, Barrett SL, Gossweiler GR, Lin Y, Rastogi SK, Brittain WJ, Craig SL. J. Am. Chem. Soc. 2018; 140: 12746
    • 5e Kryger MJ, Munaretto AM, Moore JS. J. Am. Chem. Soc. 2011; 133: 18992
    • 6a Wang Z, Craig SL. Chem. Commun. 2019; 50: 2836
    • 6b Zhang H, Li X, Lin Y, Gao F, Tang Z, Su P, Zhang W, Xu Y, Weng W, Boulatov R. Nat. Commun. 2017; 8: 1147
    • 6c Wang J, Kouznetsova TB, Craig SL. J. Am. Chem. Soc. 2015; 137: 11554
    • 6d Kean ZS, Niu Z, Hewage GB, Rheingold AL, Craig SL. J. Am. Chem. Soc. 2013; 135: 13598
    • 6e Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL. Science 2010; 329: 1057
    • 7a Lin Y, Barbee MH, Chang C.-C, Craig SL. J. Am. Chem. Soc. 2018; 140: 15969
    • 7b Kim TA, Robb MJ, Moore JS, White SR, Sottos NR. Macromolecules 2018; 51: 9177
    • 7c Robb MJ, Kim TA, Halmes AJ, White SR, Sottos NR, Moore JS. J. Am. Chem. Soc. 2016; 138: 12328
    • 7d Gossweiler GR, Kouznetsova TB, Craig SL. J. Am. Chem. Soc. 2015; 137: 6148
    • 7e Konda SS. M, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE. J. Am. Chem. Soc. 2013; 135: 12722
    • 8a Zhang M, De Bo G. J. Am. Chem. Soc. 2020; 142: 5029
    • 8b Zhang M, De Bo G. J. Am. Chem. Soc. 2019; 141: 15879
    • 8c Zhang M, De Bo G. J. Am. Chem. Soc. 2018; 140: 12724
  • 9 Nixon R, De Bo G. J. Am. Chem. Soc. 2021; 143: 3033
    • 10a Beyer M. J. Chem. Phys. 2000; 112: 7307

    • For recent reviews, see:
    • 10b Ribas-Arino J, Marx D. Chem. Rev. 2012; 112: 5412
    • 10c Stauch T, Dreuw A. Chem. Rev. 2016; 116: 14137
    • 10d Klein IM, Husic CC, Kovács DP, Choquette NJ, Robb MJ. J. Am. Chem. Soc. 2020; 142: 16364
  • 11 McDaniel DH, Brown HC. J. Org. Chem. 1958; 23: 420

    • The release of singlet oxygen (see ref. 13a) has been achieved recently using a similar flex-activation mechanism (see ref. 13b):
    • 12a Turksoy A, Yildiz D, Aydonat S, Beduk T, Canyurt M, Baytekin B, Akkaya EU. RSC Adv. 2020; 10: 9182
    • 12b Larsen MB, Boydston AJ. J. Am. Chem. Soc. 2013; 135: 8189
  • 13 Izak-Nau E, Campagna D, Baumann C, Göstl R. Polym. Chem. 2020; 11: 2274
  • 14 For a computational mechanistic study of force-accelerated rDA reaction, discussing the synchronicity of the process, see: Cardosa-Gutierrez M, De Bo G, Duwez A.-S, Remacle F. ChemRxiv 2022; preprint DOI: 10.26434/chemrxiv-2022-g64jp.