Synlett 2022; 33(18): 1778-1787
DOI: 10.1055/a-1796-7387
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

The Design and Synthesis of Phenylcyclopropane-Based Secondary Amine Catalysts and Their Applications in Asymmetric Reactions

Aika Takeshima
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
b   Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
,
Taichi Kano
a   Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
b   Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI (Grant Nos. JP26220803, JP18H01975, JP20H04815 and JP20H04828 in Hybrid Catalysis).


Abstract

Most chiral secondary amine catalysts are usually synthesized from chiral amino acids and their derivatives. On the other hand, amine catalysts based on a binaphthyl backbone have previously been developed, and show unique chemo- and stereoselectivity in several asymmetric reactions. However, in spite of their utility, the applications of binaphthyl-based amines in asymmetric reactions are still rare due to their synthetic inefficiency. In this context, we have designed amine catalysts possessing a phenylcyclopropane scaffold as a novel chiral motif. These novel catalysts can be synthesized easily and construct a similar chiral environment to that of binaphthyl-based amine catalysts. In addition, a phenylcyclopropane-based amino sulfonamide is found to be an effective catalyst for syn-selective Mannich reactions and conjugate additions using alkynyl Z-ketimines.

1 Introduction

2 Design and Synthesis of Novel Chiral Secondary Amine Catalysts

3 Performance Evaluation of Phenylcyclopropane-Based Amine Catalysts

4 Development of Asymmetric Reactions Catalyzed by a Novel Chiral Amino Sulfonamide

5 Conclusions



Publication History

Received: 02 February 2022

Accepted after revision: 13 March 2022

Accepted Manuscript online:
13 March 2022

Article published online:
13 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 2b Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 2c Marigo M, Jørgensen KA. Chem. Commun. 2006; 2001
  • 3 Kano T, Takai J, Tokuda O, Maruoka K. Angew. Chem. Int. Ed. 2005; 44: 3055
    • 4a Kano T, Yamaguchi Y, Tokuda O, Maruoka K. J. Am. Chem. Soc. 2005; 127: 16408
    • 4b Kano T, Yamaguchi Y, Tanaka Y, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 1738
    • 4c Kano T, Yamaguchi Y, Maruoka K. Angew. Chem. Int. Ed. 2009; 48: 1838
    • 4d Kano T, Yamaguchi Y, Maruoka K. Chem. Eur. J. 2009; 15: 6678
  • 5 Kano T, Shirouzu F, Maruoka K. J. Am. Chem. Soc. 2013; 135: 18036
  • 6 Kano T, Sugimoto H, Maruoka K. J. Am. Chem. Soc. 2011; 133: 18130
    • 7a Kano T, Maruoka K. Chem. Commun. 2008; 5465
    • 7b Kano T, Maruoka K. Bull. Chem. Soc. Jpn. 2010; 83: 1421
    • 7c Kano T, Maruoka K. Chem. Sci. 2013; 4: 907
  • 8 Liang D.-C, Luo R.-S, Yin L.-H, Chan AS. C, Lu G. Org. Biomol. Chem. 2012; 10: 3071
  • 9 Córdova A, Watanabe S.-I, Tanaka F, Notz W, Barbas CF. III. J. Am. Chem. Soc. 2002; 124: 1866
    • 10a Kano T, Takeda M, Sakamoto R, Maruoka K. J. Org. Chem. 2014; 79: 4240
    • 10b Kano T, Tokuda O, Takai J, Maruoka K. Chem. Asian J. 2006; 1: 210
  • 11 Takeshima A, Kano T, Maruoka K. Org. Lett. 2019; 21: 8071
  • 12 Talele TT. J. Med. Chem. 2016; 59: 8712
  • 13 Jouha J, Buttard F, Lorion M, Berthonneau C, Khouili M, Hiebel M.-A, Guillaumet G, Brière J.-F, Suzenet F. Org. Lett. 2017; 19: 4770
  • 14 David E, Rangheard C, Pellet-Rostaing S, Lemaire M. Synlett 2006; 2016
  • 15 Boga SB, Alhassan AB, Hesk D. Tetrahedron Lett. 2014; 55: 4442
  • 16 Chan KS. L, Fu H.-Y, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 2042
  • 17 Wolfe JP, Åhman J, Sadighi JP, Singer RA, Buchwald SL. Tetrahedron Lett. 1997; 38: 6367
  • 18 Kano T, Yamamoto A, Shirozu F, Maruoka K. Synthesis 2009; 1557
  • 19 Yang W, Stadler M, List B. Angew. Chem. Int. Ed. 2007; 46: 609
    • 20a Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
    • 20b Akullian LC, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2003; 42: 4244
    • 20c Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
    • 20d Hayashi Y, Yamaguchi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2004; 43: 1112
    • 20e Kano T, Yamamoto A, Maruoka K. Tetrahedron Lett. 2008; 49: 5369
    • 21a Kano T, Ueda M, Takai J, Maruoka K. J. Am. Chem. Soc. 2006; 128: 6046
    • 21b Palomo C, Vera S, Velilla I, Mielgo A, Gómez-Bengoa E. Angew. Chem. Int. Ed. 2007; 46: 8054
    • 21c Macharia J, Wambua V, Hong Y, Harris L, Hirschi JS, Evans GB, Vetticatt MJ. Angew. Chem. Int. Ed. 2017; 56: 8756
    • 22a Betancort JM, Barbas CF. III. Org. Lett. 2001; 3: 3737
    • 22b Alexakis A, Andrey O. Org. Lett. 2002; 4: 3611
    • 22c Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
    • 22d Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 22e Mase N, Watanabe K, Yoda H, Takabe K, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 4966
    • 22f Zhu S, Yu S, Ma D. Angew. Chem. Int. Ed. 2008; 47: 545
    • 22g Chi Y, Guo L, Kopf N, Gellman SH. J. Am. Chem. Soc. 2008; 130: 5608
    • 22h Wiesner M, Revell JD, Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
    • 22i Garcia P, Ladepeche A, Halder R, List B. Angew. Chem. Int. Ed. 2008; 47: 4719
    • 22j Hayashi Y, Itoh T, Ohkubo M, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 4722
    • 22k Guo L, Chi Y, Almeida AM, Guzei LA, Parker BK, Gellman SH. J. Am. Chem. Soc. 2009; 131: 16018
    • 22l Wiesner M, Upert G, Angelici G, Wennemers H. J. Am. Chem. Soc. 2010; 132: 6
    • 22m Zheng Z, Perkins BL, Ni B. J. Am. Chem. Soc. 2010; 132: 50
  • 23 Kan SB. J, Maruyama H, Akakura M, Kano T, Maruoka K. Angew. Chem. Int. Ed. 2017; 56: 9487
  • 24 Homma C, Takeshima A, Kano T, Maruoka K. Chem. Sci. 2021; 12: 1445
  • 25 Homma C, Kano T, Maruoka K. Chem. Commun. 2021; 57: 2808
  • 26 Homma C, Yamanaka M, Kano T, Maruoka K. Tetrahedron 2021; 91: 132225

    • For representative amine-catalyzed asymmetric reactions using ketimines, see:
    • 27a Zhuang W, Saaby S, Jørgensen KA. Angew. Chem. Int. Ed. 2004; 43: 4476
    • 27b Sukach VA, Golovach NM, Pirozhenko VV, Rusanov EB, Vovk MV. Tetrahedron: Asymmetry 2008; 19: 761
    • 27c Jiang B, Dong JJ, Si YG, Zhao XL, Huang ZG, Xua M. Adv. Synth. Catal. 2008; 350: 1360
    • 27d Hara N, Tamura R, Funahashi Y, Nakamura S. Org. Lett. 2011; 13: 1662
    • 27e Li L, Han M, Xiao M, Xie Z. Synlett 2011; 1727
    • 27f Kano T, Song S, Kubota Y, Maruoka K. Angew. Chem. Int. Ed. 2012; 51: 1191
    • 27g Rueping M, Rasappan R, Raja S. Helv. Chim. Acta 2012; 95: 2296
    • 27h Wang Y.-Q, Zhang Y, Pan K, You J, Zhao J. Adv. Synth. Catal. 2013; 355: 3381
    • 27i Wang Y.-Q, Cui X.-Y, Ren Y.-Y, Zhang Y. Org. Biomol. Chem. 2014; 12: 9101
    • 27j Zhang S, Li L, Hu Y, Zha Z, Wang Z, Loh T.-P. Org. Lett. 2015; 17: 1050
    • 27k Dai J, Xiong D, Yuan T, Liu J, Chen T, Shao Z. Angew. Chem. Int. Ed. 2017; 56: 12697
    • 27l Han B, Li J.-L, Ma C, Zhang S.-J, Chen Y.-C. Angew. Chem. Int. Ed. 2008; 47: 9971
    • 27m Han B, He Z.-Q, Li J.-L, Li R, Jiang K, Liu T.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5474
    • 27n Li J.-L, Zhou S.-L, Han B, Wu L, Chen Y.-C. Chem. Commun. 2010; 46: 2665
    • 27o Yin X, Zhou Q, Dong L, Chen Y. Chin. J. Chem. 2012; 30: 2669
    • 27p Feng X, Zhou Z, Ma C, Yin X, Li R, Dong L, Chen Y.-C. Angew. Chem. Int. Ed. 2013; 52: 14173
    • 27q An Q, Shen J, Butt N, Liu D, Liu Y, Zhang W. Adv. Synth. Catal. 2015; 357: 3627
    • 27r Li J.-Y, Li Z.-L, Zhao W.-W, Liu Y.-K, Tong Z.-P, Tan R. Org. Biomol. Chem. 2016; 14: 2444
    • 27s Dai J, Wang Z, Deng Y, Zhu L, Peng F, Lan Y, Shao Z. Nat. Commun. 2019; 10: 5182
    • 28a Kano T, Kobayashi R, Maruoka K. Org. Lett. 2016; 18: 276
    • 28b Kano T, Aota Y, Maruoka K. Angew. Chem. Int. Ed. 2017; 56: 16293

      For reviews, see:
    • 29a Cardillo G, Tomasini C. Chem. Soc. Rec. 1996; 25: 117
    • 29b Liu M, Sibi MP. Tetrahedron 2002; 58: 7991
    • 29c Seebach D, Beck AK, Capone S, Deniau G, Grošelj U, Zass E. Synthesis 2009; 1
    • 29d Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
  • 30 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 31 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian Inc; Wallingford (CT, USA): 2016
  • 32 List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395