Synlett 2022; 33(14): 1323-1328
DOI: 10.1055/a-1792-7169
cluster
Organic Chemistry in Thailand

Decarboxylation of Paraconic Acids by a Silver(I) Nitrate/Persulfate Combination: An Entry to β-Nitro- and β-Hydroxy γ-Butyrolactones

Supasorn Phae-nok
,
,
Pawaret Leowanawat
,
,
The authors acknowledge financial support from the Thailand Research Fund (RSA6180025), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Ministry of Higher Education, Science, Research and Innovation, the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative. A student scholarship to S.P. from the National Science and Technology Development Agency (NSTDA) is also gratefully acknowledged.


Abstract

Decarboxylative transformations of paraconic acids, a class of γ-butyrolactones containing a carboxylic acid group at the β-position as their characteristic functionality, by using a combination of AgNO3/K2S2O8 were investigated. The dual function of AgNO3 as an initiator of the decarboxylation process and as a source of nitrogen dioxide radicals that react with aliphatic carboxylic substrates is reported for the first time. Starting from paraconic acids, β-nitro- and β-hydroxy γ-butyrolactones were obtained in good combined yields (41–85%) with moderate selectivity in a one-pot operation. The reactions were completed within an acceptable reaction time (two hours) under mild conditions that were tolerated by the γ-butyrolactone core. This study provides a direct and site-specific entry to β-nitro- and β-hydroxy γ-butyrolactones, which are important precursors in organic transformations.

Supporting Information



Publication History

Received: 21 January 2022

Accepted after revision: 09 March 2022

Accepted Manuscript online:
09 March 2022

Article published online:
19 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Adv. Synth. Catal. 2021; 363: 2678
    • 2a Tang Z.-L, Ouyang X.-H, Song R.-J, Li J.-H. Org. Lett. 2021; 23: 1000
    • 2b Zheng Y, Shao X, Ramadoss V, Tian L, Wang Y. Synthesis 2020; 52: 1357

    • For decarboxylative azidations, see:
    • 2c Zhu Y, Liu X, Wang X, Huang X, Shen T, Shen T, Zhang Y, Sun X, Zou M, Song S, Jiao N. Org. Lett. 2015; 17: 4702
    • 2d Liu C, Wang X, Li Z, Cui L, Li C. J. Am. Chem. Soc. 2015; 137: 9820

    • For a decarboxylative amination, see:
    • 2e Kong D, Moon PJ, Bsharat O, Lundgren RJ. Angew. Chem. Int. Ed. 2020; 59: 1313
  • 3 Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Russ. Chem. Rev. 2020; 89: 1
    • 4a Natarajan P, Chaudhary R, Venugopalan P. J. Org. Chem. 2015; 80: 10498
    • 4b Agasti S, Maiti S, Maity S, Anniyappan M, Talawar MB, Maiti D. Polyhedron 2019; 172: 120
    • 4c Zarei M, Noroozizadeh E, Moosavi-Zare AR, Zolfigol MA. J. Org. Chem. 2018; 83: 3645
    • 4d Natarajan P, Chaudhary R, Venugopalan P. Tetrahedron Lett. 2019; 60: 1720
    • 4e Das JP, Sinha P, Roy S. Org. Lett. 2002; 4: 3055
    • 4f Manna S, Jana S, Saboo T, Maji A, Maiti D. Chem. Commun. 2013; 49: 5286
    • 4g Roshandel S, Gurung L, Mathew T, Prakash GK. S. Tetrahedron Lett. 2017; 58: 2842
    • 4h Qian Y.-E, Zheng L, Xiang H.-Y, Yang H. Org. Biomol. Chem. 2021; 19: 4835
    • 4i Majedi S, Majedi S, Behmagham F. Chem. Rev. Lett. 2019; 2: 187 ; See also ref. 1

      For the use of Ag(I)/K2S2O8 in decarboxylation, see for example:
    • 5a Yin F, Wang Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 10401
    • 5b Seo S, Taylor JB, Greaney MF. Chem. Commun. 2012; 48: 8270
    • 5c Seo S, Slater M, Greaney MF. Org. Lett. 2012; 14: 2650
    • 5d Hu F, Shao X, Zhu D, Lu L, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 6105
    • 5e Patel NR, Flowers RA. II. J. Org. Chem. 2015; 80: 5834
    • 5f Luo W.-Y, Lu B, Qiu Y.-F, Zhou R.-Y, He Y.-J, Wang J. New J. Chem. 2020; 44: 8702
    • 5g Huang T, Yu Y, Wang H, Lin Y, Ma Y, Wang H, Ding C.-H, Xiao J, Xu B. Synthesis 2020; 52: 239
    • 5h Wang P.-F, Wang X.-Q, Dai J.-J, Feng Y.-S, Xu H.-J. Org. Lett. 2014; 16: 4586

      For the use of AgNO3 as a nitro source, see for example:
    • 6a Fan Z, Lu H, Zhang A. J. Org. Chem. 2018; 83: 3245
    • 6b Fan Z, Li J, Lu H, Wang D.-Y, Wang C, Uchiyama M, Zhang A. Org. Lett. 2017; 19: 3199
    • 6c Dou Y, Yin B, Zhang P, Zhu Q. Eur. J. Org. Chem. 2018; 4571
    • 7a Phae-nok S, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Eur. J. Org. Chem. 2015; 2879
    • 7b Phae-nok S, Kuhakarn C, Pohmakotr M, Reutrakul V, Soorukram D. Org. Biomol. Chem. 2015; 13: 11087
    • 7c Phae-nok S, Pohmakotr M, Kuhakarn C, Reutrakul V, Soorukram D. Eur. J. Org. Chem. 2019; 4710

      For recent syntheses of nitrolactones, see for example:
    • 8a Yoshimura T, Umeda Y, Takahashi R, Matsuo J. Chem. Pharm. Bull. 2020; 68: 1220
    • 8b Nakao R, Fujii Y, Hayakawa I, Mizoguchi H, Sakakura A. Synlett 2020; 31: 2018
    • 9a Sibrian-Vazquez M, Spivak DA. Synlett 2002; 1105
    • 9b Hajra S, Akhtar SM. S, Aziz SM. Chem. Commun. 2014; 50: 6913
    • 9c Pandey G, Gaikwad AL, Gadre SR. Asian J. Org. Chem. 2012; 1: 65
    • 9d Miyata O, Namba M, Ueda M, Naito T. Org. Biomol. Chem. 2004; 2: 1274
    • 9e Callebaut G, Mangelinckx S, Kiss L, Sillanpää R, Fülöp F, De Kimpe N. Org. Biomol. Chem. 2012; 10: 2326
    • 9f Sidthipong K, Ma J, Yu WL, Wang YF, Kobayashi S, Kishino S, Koide N, Yokochi T, Kato K, Okada S, Umezawa K. Bioorg. Med. Chem. Lett. 2017; 27: 562
    • 9g Cabrele C, Martinek TA, Reiser O, Berlicki Ł. J. Med. Chem. 2014; 57: 9718
    • 9h Sibi MP, Deshpande PK. J. Chem. Soc., Perkin Trans. 1 2000; 1461
  • 10 Khan SN, Zaman MK, Li R, Sun Z. J. Org. Chem. 2020; 85: 5019 ; See also ref. 1
  • 11 Kianmehr E, Nasab SB. Eur. J. Org. Chem. 2018; 6447
  • 12 Zhang T.-S, Wang R, Cai P.-J, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2019; 6: 2968
    • 13a Isozaki S, Nishiwaki Y, Sakaguchi S, Ishii Y. Chem. Commun. 2001; 1352
    • 13b Sakaguchi S, Nishiwaki Y, Kitamura T, Ishii Y. Angew. Chem. Int. Ed. 2001; 40: 222
    • 13c He X, Li Z, Hu H, Chen J, Zeng L, Zhang J, Lin W, Wang C. Cell Rep. Phys. Sci. 2021; 2: 100481
    • 13d Amaya T, Fujimoto H. Tetrahedron Lett. 2018; 59: 2657 ; See also ref. 8a
  • 14 Mete TB, Khopade TM, Bhat RG. Tetrahedron Lett. 2017; 58: 2822
    • 15a Gomez-Bengoa E, Linden A, López R, Múgica-Mendiola I, Oiarbide M, Palomo C. J. Am. Chem. Soc. 2008; 130: 7955
    • 15b Rahaim RJ, Maleczka RE. Org. Lett. 2005; 7: 5087
    • 15c Mandal PK, McMurray JS. J. Org. Chem. 2007; 72: 6599
    • 15d Wang K, Qian X, Cui J. Tetrahedron 2009; 65: 10377
    • 15e Lee SH, Park YJ, Yoon CM. Org. Biomol. Chem. 2003; 1: 1099
  • 16 5,5-Diethyl-4-nitrodihydrofuran-2(3H)-one (2a) and 5,5-Diethyl-4-hydroxydihydrofuran-2(3H)-one (3a): Typical Procedure To a mixture of 1a (1 mmol), AgNO3 (3 equiv), and K2S2O8 (1.25 equiv) was added anhyd MeCN (0.1 M), and the resulting suspension was stirred at the reflux for 2 h. The mixture was then cooled to r.t. and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with a sat. aq NaHCO3 (20 mL) and brine, then dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by flash column chromatography [silica gel, acetone–hexanes (1:4)] to give 2a as a pale-yellow oil [yield: 71.8 mg (38%)] and 3a as a pale-yellow oil [yield: 46.8 mg (30%)]. 2a Rf = 0.41 (acetone–hexanes, 1:4). IR (ATR): 1776, 1555, 1202, 1115, 961 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.06 (app. dd of ABX, J BX = 3.0, J AX = 7.6 Hz, 1 H, CH), 3.20 (ABq of ABX, J BX = 3.0, J AB = 18.8 Hz, 1 H, CHH), 2.99 (ABq of ABX, J AX = 7.6, J AB = 18.8 Hz, 1 H, CHH), 1.88–1.76 (m, 1 H, CHH), 1.76–1.55 (m, 3 H, CHH and CH 2), 0.96 (t, J = 7.6 Hz, 3 H, CH 3), 0.95 (t, J = 7.4 Hz, 3 H, CH 3). 13C NMR (100 MHz, CDCl3): δ = 171.3 (C), 89.3 (CH), 86.3 (C), 33.8 (CH2), 28.8 (CH2), 25.1 (CH2), 7.7 (CH3), 7.6 (CH3). 15N NMR (60.8 MHz, CDCl3): δ = 383.0–382.7. MS: m/z (%) = 188 (65) [M + H]+, 178 (46), 111 (20), 57 (100). HRMS (ESI-TOF): m/z [M + Na]+ calcd for C8H13NNaO4: 210.0737; found: 210.0739. 3a Rf = 0.22 (acetone–hexanes, 1:4). IR (ATR): 3410, 1742, 1275, 1114, 1079, 953 cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.23 (app. dd of ABX, J BX = 3.1, J AX = 6.7 Hz, 1 H, CH), 2.88 (ABq of ABX, J AX = 6.7, J AB = 18.4 Hz, 1 H, CHH), 2.46 (ABq of ABX, J BX = 3.1, J AB = 18.4 Hz, 1 H, CHH), 2.15 (br s, 1 H, OH), 1.88–1.68 (m, 2 H, CH2), 1.67–1.48 (m, 2 H, CH2), 0.92 (t, J = 6.6 Hz, 3 H, CH3), 0.88 (t, J = 6.6 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 175.3 (C), 92.6 (C), 71.8 (CH), 38.7 (CH2), 28.0 (CH2), 23.3 (CH2), 7.8 (CH3), 7.7 (CH3). MS: m/z (%) = 159 (38) [M + H]+, 141 (100), 111 (34), 83 (50), 69 (17), 55 (41). HRMS (ESI-TOF): m/z [M + Na]+ calcd for C8H14NaO3: 181.0834; found: 181.0837.