Synlett 2022; 33(09): 885-889
DOI: 10.1055/a-1760-8817
cluster
Mechanochemistry

Pulling Outward but Reacting Inward: Mechanically Induced Symmetry-Allowed Reactions of cis- and trans-Diester-Substituted Dichlorocyclopropanes

Zi Wang
,
Tatiana B. Kouznetsova
,
National Science Foundation (Grant CHE-1808518)


Abstract

The mechanically induced symmetry-allowed disrotatory ring openings of cis- and trans-gem-dichlorocyclopropane (gDCC) diesters are demonstrated through sonication and single-molecule force spectroscopy (SMFS) studies. In contrast to the previously reported symmetry-forbidden conrotatory ring opening of alkyl-tethered trans-gDCC, we show that the diester-tethered trans-gDCC primarily undergoes a symmetry-allowed disrotatory pathway even at the high forces (>2 nN) and short-time scales (ms or less) of sonication and SMFS experiments. The quantitative force-rate data obtained from SMFS data is consistent with computational models of transition-state geometry for the symmetry-allowed process, and activation lengths of 1.41 ± 0.02 Å and 1.08 ± 0.03 Å are inferred for the cis-gDCC diester and trans-gDCC diester, respectively. The strong mechanochemical coupling in the trans-gDCC is notable, given that the directionality of the applied force may appear initially to oppose the disrotatory motion associated with the reaction. The stereochemical perturbations of mechanical coupling created by the ester attachments reinforce the complexity that is possible in covalent polymer mechanochemistry and illustrate the breadth of reactivity outcomes that are available through judicious mechanophore design.

Supporting Information



Publication History

Received: 04 January 2022

Accepted after revision: 03 February 2022

Accepted Manuscript online:
03 February 2022

Article published online:
28 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Z.W. is also affiliated with Lawrence Berkeley National Laboratory, Molecular Foundry, 67 Cyclotron Road, Berkeley, CA 94720, USA.
  • 2 Woodward RB, Hoffmann R. Angew. Chem., Int. Ed. Engl. 1969; 8: 781
    • 3a Brown CL, Craig SL. Chem. Sci. 2015; 6: 2158
    • 3b Ghanem MA, Basu A, Behrou R, Boechler N, Boydston AJ, Craig SL, Lin Y, Lynde BE, Nelson A, Shen H, Storti DW. Nat. Rev. Mater. 2021; 6: 84
    • 3c Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR. Nature 2007; 446: 423
  • 4 Bowser BH, Craig SL. Polym. Chem. 2018; 9: 3583
    • 5a Ong MT, Leiding J, Tao H, Virshup AM, Martínez TJ. J. Am. Chem. Soc. 2009; 131: 6377
    • 5b Ribas-Arino J, Shiga M, Marx D. Angew. Chem. Int. Ed. 2009; 48: 4190
    • 5c Kochhar GS, Bailey A, Mosey NJ. Angew. Chem. Int. Ed. 2010; 49: 7452
    • 5d Li W, Edwards SA, Lu L, Kubar T, Patil SP, Grubmüller H, Groenhof G, Gräter F. ChemPhysChem 2013; 14: 2687
    • 5e Wang J, Kouznetsova TB, Niu Z, Rheingold AL, Craig SL. J. Org. Chem. 2015; 80: 11895
  • 6 Wang J, Kouznetsova TB, Niu Z, Ong MT, Klukovich HM, Rheingold AL, Martinez TJ, Craig SL. Nat. Chem. 2015; 7: 323
  • 7 Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL. Science 2010; 329: 1057
    • 8a Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL. Nat. Chem. 2012; 5: 110
    • 8b Dopieralski P, Ribas-Arino J, Marx D. Angew. Chem. Int. Ed. 2011; 50: 7105
  • 9 Klukovich HM, Kean ZS, Ramirez AL. B, Lenhardt JM, Lin J, Hu X, Craig SL. J. Am. Chem. Soc. 2012; 134: 9577
    • 10a Brown CL, Bowser BH, Meisner J, Kouznetsova TB, Seritan S, Martinez TJ, Craig SL. J. Am. Chem. Soc. 2021; 143: 3846
    • 10b Tian Y, Cao X, Li X, Zhang H, Sun C.-L, Xu Y, Weng W, Zhang W, Boulatov R. J. Am. Chem. Soc. 2020; 142: 18687
  • 11 Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
  • 12 Zhang Y, Wang Z, Kouznetsova TB, Sha Y, Xu E, Shannahan L, Fermen-Coker M, Lin Y, Tang C, Craig SL. Nat. Chem. 2021; 13: 56
    • 13a Barbee MH, Kouznetsova T, Barrett SL, Gossweiler GR, Lin Y, Rastogi SK, Brittain WJ, Craig SL. J. Am. Chem. Soc. 2018; 140: 12746
    • 13b Razgoniaev AO, Glasstetter LM, Kouznetsova TB, Hall KC, Horst M, Craig SL, Franz KJ. J. Am. Chem. Soc. 2021; 143: 1784
  • 14 Hummer G, Szabo A. Biophys. J. 2003; 85: 5
  • 15 Wang J, Kouznetsova TB, Kean ZS, Fan L, Mar BD, Martínez TJ, Craig SL. J. Am. Chem. Soc. 2014; 136: 15162
  • 16 Peng C, Ayala PY, Schlegel HB, Frisch MJ. J. Comput. Chem. 1996; 17: 49
  • 17 Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL. Nat. Chem. 2013; 5: 110
  • 18 Kean ZS, Niu Z, Hewage GB, Rheingold AL, Craig SL. J. Am. Chem. Soc. 2013; 135: 13598
    • 19a Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y. Nat. Chem. 2019; 11: 310
    • 19b O’Neill RT, Boulatov R. Synlett 2021; 32: in press; DOI: 10.1055/a-1710-5656.
    • 20a Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J. Am. Chem. Soc. 2018; 140: 1584
    • 20b Lin Y, Barbee MH, Chang C.-C, Craig SL. J. Am. Chem. Soc. 2018; 140: 15969
    • 20c Kosuge T, Zhu X, Lau VM, Aoki D, Martinez TJ, Moore JS, Otsuka H. J. Am. Chem. Soc. 2019; 141: 1898
    • 21a Ramirez AL. B, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL. Nat. Chem. 2013; 5: 757
    • 21b Wang J, Piskun I, Craig SL. ACS Macro Lett. 2015; 4: 834
    • 21c Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed. 2015; 54: 6168
    • 21d Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP. Science 2019; 363: 504
    • 22a Wang S, Beech HK, Bowser BH, Kouznetsova TB, Olsen BD, Rubinstein M, Craig SL. J. Am. Chem. Soc. 2021; 143: 3714
    • 22b Wang Z, Zheng X, Ouchi T, Kouznetsova TB, Beech HK, Av-Ron S, Matsuda T, Bowser BH, Wang S, Johnson JA, Kalow JA, Olsen BD, Gong JP, Rubinstein M, Craig SL. Science 2021; 374: 193
  • 23 Typical Experimental Procedure for the Synthesis of Multimechanophore Polymers P1 and P2 50 mg cis-macrocycle (0.15 mmol) and 105 mg monoepoxidized cyclooctadiene (0.85 mmol), or 84 mg trans-macrocycle (0.25 mmol) and 93 mg monoepoxidized cyclooctadiene (0.75 mmol), were dissolved in 0.15 mL dry DCM and deoxygenated with N2 for 10 min. 1.0 mg (0.0012 mmol) Grubbs second-generation catalyst was dissolved in 1 mL DCM and deoxygenated for 20 min. 0.1 mL of the Grubbs catalyst solution was transferred to the monomer solution via a syringe. The viscosity of the solution increased after 30 min and stirring ceased quickly. 0.2 mL of DCM was added to the solution to allow the stirring to continue, and the reaction was allowed to proceed for another 2 h. The reaction was quenched with 1 mL of ethyl vinyl ether and stirred for 1 h. The reaction was then precipitated in methanol, redissolved in DCM, and reprecipitated in methanol and dried on a vacuum line. P1: 1H NMR (500 MHz, CDCl3): δ = 5.52–5.41 (m, 14 H), 4.22–4.11 (m, 4 H), 2.94–2.91 (m, 12 H), 2.81 (s, 2 H), 2.24–2.13 (m, 25 H), 1.70–1.64 (m, 4 H), 1.68–1.42 (m, 36 H). P2: 1H NMR (500 MHz, CDCl3): δ = 5.54–5.41 (m, 9 H), 4.21–4.18 (m, 4 H), 3.05 (s, 2 H), 2.93–2.91 (m, 6.7 H), 2.23–2.11 (m, 18 H), 1.70–1.45 (m, 18 H).