Synthesis 2022; 54(10): 2395-2414
DOI: 10.1055/a-1755-2061
paper

Synthesis of Quinolino[1,2-c]quinazolin-6-one Derivatives via Formal (4+2)-Cycloaddition of Alkenes to Quinazolinе-Derived N-Acyliminium Cations: An Experimental and Theoretical Study

Alexander S. Filatov
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
,
Anna G. Larina
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
,
Mikhail L. Petrov
b   Saint Petersburg State Institute of Technology, Moskovskii pr. 26, 190013, St. Petersburg, Russian Federation
,
Vitali M. Boitsov
c   Saint Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russian Federation
,
Alexander V. Stepakov
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
b   Saint Petersburg State Institute of Technology, Moskovskii pr. 26, 190013, St. Petersburg, Russian Federation
› Author Affiliations
We gratefully acknowledge financial support provided by the Russian Foundation for Basic Research (Project no. 20-33-90325). This work was supported by the Ministry of Science and Higher Educationof the Russian Federation (0785.00.X6019). V.M.B. is grateful to the Ministry of Education and Science of the Russian Federation (0791-2020-0006) for financial support.


Abstract

3-Aryl-4-hydroxy-1-methyl-3,4-dihydroquinazolin-2(1H)-ones were synthesized by reduction of 3-aryl-1-methylquinazoline-2,4(1H,3H)-diones with sodium triethylborohydride and studied as precursors of N-acyliminium cations that were expected to be trapped with various alkenes as (4+2)-cycloadducts. Unsubstituted 3-aryl-4-hydroxy-1-methyl-3,4-dihydroquinazolin-2(1H)-ones in the presence of BF3·Et2O failed to produce the desired cycloadducts probably due to a homooligomerization reaction involving N-acyliminium intermediates. To prevent this side reaction, we found it necessary to introduce substituents at both positions C6 and C8 of the quinazoline ring and C4′ of the 3-phenyl substituent. Utilizing bromine atoms as substituents at C6 and C8, N-acyliminium cations generated from 3-aryl-6,8-dibromo-4-hydroxy-1-methyl-3,4-dihydroquinazolin-2(1H)-ones in the presence of BF3·Et2O smoothly reacted with such alkenes as indene, acenaphthylene, styrene, α-methylstyrene to give new quinolino[1,2-c]quinazolin-6-one derivatives with high regio- and stereoselectivity. Density functional theory calculations were performed at the M06-2x/cc-pVDZ level to obtain an insight into the mechanism of the (4+2)-cycloaddition reaction of quinazoline-derived N-acyliminium cations to alkenes.

Supporting Information



Publication History

Received: 29 September 2021

Accepted after revision: 31 January 2022

Accepted Manuscript online:
31 January 2022

Article published online:
16 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Khan I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2014; 76: 193
    • 1b Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
    • 2a Rakesh KP, Kumara HK, Manukumar HM, Gowda DC. Bioorg. Chem. 2019; 87: 252
    • 2b Sen T, Neog K, Sarma S, Manna P, Boruah HP. D, Gogoi P, Singh AK. Bioorg. Med. Chem. 2018; 26: 4942
    • 2c Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee KH. J. Med. Chem. 2000; 43: 4479
  • 3 Stoessel P, Breuning E, Joosten D. WO 2011044988, 2011
  • 4 Phillips SD, Castle RN. J. Heterocycl. Chem. 1980; 17: 1665
  • 5 Molina P, Aller E, Lorenzo A. Synthesis 1998; 283
    • 6a Wu P, Nielsen TE. Chem. Rev. 2017; 117: 7811
    • 6b Maryanoff BE, Zhang H.-C, Cohen JH, Turchi IJ, Maryanoff CA. Chem. Rev. 2004; 104: 1431
    • 6c Yazici A, Pyne SG. Synthesis 2009; 339
    • 6d Yazici A, Pyne SG. Synthesis 2009; 513
    • 7a Lenshimidt LV, Ledovskaya MS, Larina AG, Filatov AS, Chakchir OB, Uspenskii AA, Stepakov AV. Russ. J. Org. Chem. 2020; 56: 234
    • 7b Lenshmidt LV, Ledovskaya MS, Larina AG, Filatov AS, Molchanov AP, Kostikov RR, Stepakov AV. Russ. J. Org. Chem. 2018; 54: 112
    • 7c Larina AG, Filatov AS, Suslonov VV, Molchanov AP, Stepakov AV. Tetrahedron 2017; 73: 3949
    • 7d Larina AG, Nosova VE, Filatov AS, Molchanov AP, Starova GL, Zolotarev AA, Boitsov VM, Stepakov AV. Tetrahedron 2016; 72: 5064
    • 8a Zhang W, Zheng A, Liu Z, Yang L, Liu Z. Tetrahedron Lett. 2005; 46: 5691
    • 8b Qiao L, Zhou Y, Zhang W. Chin. J. Chem. 2010; 28: 449
    • 8c Jha A, Chou T.-Y, Aljaroudi Z, Ellis BD, Cameron TS. Beilstein J. Org. Chem. 2014; 10: 848
    • 8d Stepakov AV, Larina AG, Boitsov VM, Gurzhiy VV, Molchanov AP, Kostikov RR. Tetrahedron Lett. 2014; 55: 2022
    • 8e Jian L, Shangrong Z, Qiuneng X, Li L, Shenghu Y. Org. Biomol. Chem. 2019; 17: 10004
    • 9a Sawant RT, Stevens MY, Sköld C, Odell LR. Org. Lett. 2016; 18: 5392
    • 9b Sawant RT, Stevens MY, Odell LR. ACS Omega 2018; 3: 14258
  • 10 Kano S, Yuasa Y, Shibuya S. Synthesis 1984; 1071
  • 11 Azizian J, Mohammadi AA, Karimi AR. Synth. Commun. 2003; 33: 415
  • 12 Hagara M, Soliman SM, Ibid F, El Ashry ES. H. J. Mol. Struct. 2016; 1108: 667
  • 13 Parr RG, Szentpaly L, Liu S. J. Am. Chem. Soc. 1999; 121: 1922
  • 14 Pérez P, Domingo LR, Aurell MJ, Contreras R. Tetrahedron 2003; 59: 3117
  • 15 Semenov BB, Novikov KA, Spitsin AN, Azev VN, Kachala VV. Chem. Nat. Compd. 2004; 40: 585
  • 16 Russo CM, Adhikari AA, Wallach DR, Fernandes S, Balch AN, Kerr WM, Chisholm JD. Bioorg. Med. Chem. Lett. 2015; 25: 5344
  • 17 Reissenweber G, Mangold D. Angew. Chem. Int. Ed. 1980; 19: 222
  • 18 Wang S.-L, Yang K, Yao C.-S, Wang X.-S. Synth. Commun. 2012; 42: 341
  • 19 Dou G.-L, Wang M.-M, Huang Z.-B, Shi D.-Q. J. Heterocycl. Chem. 2009; 46: 645
  • 20 Nakagawa A, Uno S, Makishima M, Miyachi H, Hashimoto Y. Bioorg. Chem. Med. 2008; 16: 7046
  • 21 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 22 Dunning TH. J. Chem. Phys. 1989; 90: 1007
  • 23 Cossi M, Rega N, Scalmani G, Barone V. J. Comput. Chem. 2003; 24: 669
  • 24 Schlegel HB. J. Comput. Chem. 1982; 3: 214
  • 25 Fukui KJ. J. Phys. Chem. 1970; 74: 4161
  • 26 Reed AE, Weinstock RB, Weinhold FJ. J. Chem. Phys. 1985; 83: 783
  • 27 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ő, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01 . Gaussian; Wallingford CT: 2013