DOI: 10.1055/a-1741-9069

Development of an Aza-Piancatelli-Templated Reaction Manifold from 4-Aminocyclopentenones: Access to Complex Carbocyclic Assemblies

Chenna Jagadeesh
Biplab Mondal
Jaideep Saha
This work was supported by the Science and Engineering Research Board (SERB, CRG/2020/000381) and the Council of Scientific and Industrial Research, India (CSIR-EMR-II, 02(0395)/21/EMR-II) research grants to JS. CJ and BM thank UGC and CSIR for fellowships.


Capitalizing on the propensity of 1,2-amino group migration in γ-aminocyclopentenone with a suitable promoter, gem-diaryl-equipped systems unfolded an unprecedented avenue for the Lewis acid promoted displacement of γ-aniline group with nucleophiles such as indole. Such transformation, besides providing a means for direct γ-functionalization of cyclopentenones, presented innumerable scope for β,γ-annulation. Various tailored indolo bisnucleophiles were explored in the current study that rendered an array of indole alkaloid-like compounds in excellent yields and selectivity through one-pot operation. Analysis of collective experimental observation along with designed control experiments strongly suggested the possibility of a retro aza-Piancatelli rearrangement, which is hitherto unknown in the context. Such repertoire could find potential applications in the synthesis of complex assemblies from the Piancatelli rearrangement and related processes.

1 Introduction

2 Aza-Piancatelli Rearrangement and Related Domino Processes

3 An Unprecedented Aza-Piancatelli-Templated Strategy for Polycyclic Assemblies

4 Summary and Outlook

Publication History

Received: 31 December 2021

Accepted after revision: 16 January 2022

Publication Date:
16 January 2022 (online)

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • 1a Aitken DJ, Eijsberg H, Frongia A, Ollivier J, Piras PP. Synthesis 2014; 46: 1
    • 1b Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744

      For a selected review on Nazarov reactions, see:
    • 2a Riveira MJ, Marsili LA, Mischne MP. Org. Biomol. Chem. 2017; 15: 9255
    • 2b Yadykov AV, Shirinian VZ. Adv. Synth. Catal. 2020; 362: 702

      For examples of Nazarov reactions relevant to current study, see:
    • 3a William R, Wang S, Ding F, Arviana EN, Liu X.-W. Angew. Chem. Int. Ed. 2014; 126: 10918
    • 3b Marques A.-S, Duhail T, Marrot J, Chataigner I, Coeffard V, Vincent G, Moreau X. Angew. Chem. Int. Ed. 2019; 58: 9969
  • 4 Khand IU, Knox GR, Pauson PL, Watts WE. J. Chem. Soc. D 1971; 36a
  • 5 Piancatelli G, Scettri A, Barbadoro S. Tetrahedron Lett. 1976; 17: 3555
  • 6 Veits GK, Wenz DR, Read de Alaniz J. Angew. Chem. Int. Ed. 2010; 49: 9484
  • 7 Cai Y, Tang Y, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 14126
  • 8 Palmer LI, Read de Alaniz J. Angew. Chem. Int. Ed. 2011; 50: 7167
  • 9 Gouse S, Reddy NR, Baskaran S. Org. Lett. 2019; 21: 3822
  • 10 Wang S, Guillot R, Carpentier J.-F, Sarazin Y, Bour C, Gandon V, Leboeuf D. Angew. Chem. Int. Ed. 2020; 59: 1134
  • 11 Vonteddu NR, Solanke PR, Nayani K, Chandrasekhar S. Org. Lett. 2020; 22: 8555

    • For selected references, see:
    • 12a Hendrickson JB, Wang J. Org. Lett. 2004; 6: 3
    • 12b Crawley SL, Funk RL. Org. Lett. 2003; 5: 3169
    • 12c Cordier C, Morton D, Murrison S, Nelson A, O’Leary-Steele C. Nat. Prod. Rep. 2008; 719
    • 12d Qiao Z, Shafiq Z, Liu L, Yu Z.-B, Zheng Q.-Y, Wang D, Chen Y.-J. Angew. Chem. Int. Ed. 2010; 49: 7294
    • 12e Xu Q.-L, Dai L.-X, You S.-L. Chem. Sci. 2013; 4: 97

      For selective examples, see:
    • 13a Lebœuf D, Marin L, Michelet B, Perez-Luna A, Guillot R, Schulz E, Gandon V. Chem. Eur. J. 2016; 22: 16165
    • 13b Veits GK, Wenz DR, Palmer LI, St Amant AH, Hein JE, Read de Alaniz J. Org. Biomol. Chem. 2015; 13: 8465
    • 13c Scettri A, Piancatelli G, D’auria M, David G. Tetrahedron 1979; 35: 135
  • 14 Jagadeesh C, Mondal B, Pramanik S, Das D, Saha J. Angew. Chem. Int. Ed. 2021; 60: 8808