Synlett 2022; 33(10): 907-912
DOI: 10.1055/a-1741-9000
synpacts

Multicomponent Reactions Among Alkyl Isocyanides, sp Reactants, and sp2 Carbon Cages

Yanbang Li
a   Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
,
William P. Kopcha
a   Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
,
Antonio Rodriguez-Fortea
b   Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
,
Jianyuan Zhang
a   Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
› Author Affiliations
This work is supported by the U.S. Department of Energy (Grant No. DE-SC0020260), the Spanish Ministerio de Ciencia e Innovación (Grant No. PID2020-112762GB-I00), and the Generalitat de Catalunya (Grant No. 2017SGR629).


Abstract

We explored the reactivity and substrate scope of the reactions among an alkyl isocyanide, an sp-hybridized reactant (i.e. alkyne or allene), and a carbon cage, as a new approach to functionalize fullerenes and metallofullerenes. This account summarizes the key findings in our recent published work, and some original data for the reaction involving an isocyanide, allenes, and metallofullerene Lu3N@C80.

1 Introduction

2 Isocyanide-Induced Fullerene/EMF Reactions with Substituted Alkynes

3 Isocyanide-Induced Fullerene/EMF Reactions with Substituted Allenes

4 Conclusion



Publication History

Received: 22 December 2021

Accepted after revision: 16 January 2022

Accepted Manuscript online:
16 January 2022

Article published online:
10 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jin P, Li Y, Magagula S, Chen Z. Coord. Chem. Rev. 2019; 388: 406
    • 1b Lu X, Akasaka T, Nagase S. Chem. Commun. 2011; 47: 5942
    • 1c Popov AA, Yang S, Dunsch L. Chem. Rev. 2013; 113: 5989
    • 1d Lu X, Feng L, Akasaka T, Nagase S. Chem. Soc. Rev. 2012; 41: 7723
    • 1e Lu X, Bao L, Akasaka T, Nagase S. Chem. Commun. 2014; 50: 14701
    • 1f Chaur MN, Melin F, Ortiz AL, Echegoyen L. Angew. Chem. Int. Ed. 2009; 48: 7514
    • 1g Yamada M, Liu MT. H, Nagase S, Akasaka T. Molecules 2020; 25: 3626
  • 2 Cai W, Chen C.-H, Chen N, Echegoyen L. Acc. Chem. Res. 2019; 52: 1824
    • 3a Liu F, Gao C.-L, Deng Q, Zhu X, Kostanyan A, Westerström R, Wang S, Tan Y.-Z, Tao J, Xie S.-Y, Popov AA, Greber T, Yang S. J. Am. Chem. Soc. 2016; 138: 14764
    • 3b Liu F, Krylov DS, Spree L, Avdoshenko SM, Samoylova NA, Rosenkranz M, Kostanyan A, Greber T, Wolter AU. B, Büchner B, Popov AA. Nat. Commun. 2017; 8: 16098
    • 3c Velkos G, Krylov DS, Kirkpatrick K, Spree L, Dubrovin V, Büchner B, Avdoshenko SM, Bezmelnitsyn V, Davis S, Faust P, Duchamp J, Dorn HC, Popov AA. Angew. Chem. Int. Ed. 2019; 58: 5891
    • 4a Harneit W. In Endohedral Fullerenes: Electron Transfer and Spin . Popov AA. Springer; Cham: 2017: 297-324
    • 4b Hu Z, Dong B.-W, Liu Z, Liu J.-J, Su J, Yu C, Xiong J, Shi D.-E, Wang Y, Wang B.-W, Ardavan A, Shi Z, Jiang S.-D, Gao S. J. Am. Chem. Soc. 2018; 140: 1123
  • 5 Rudolf M, Kirner SV, Guldi DM. Chem. Soc. Rev. 2016; 45: 612
  • 6 Wang X, McKay JE, Lama B, van Tol J, Li T, Kirkpatrick K, Gan Z, Hill S, Long JR, Dorn HC. Chem. Commun. 2018; 54: 2425
  • 7 Li T, Dorn HC. Small 2017; 13: 1603152
    • 8a Zhen M, Shu C, Li J, Zhang G, Wang T, Luo Y, Zou T, Deng R, Fang F, Lei H, Wang C, Bai C. Sci. China Mater. 2015; 58: 799
    • 8b Zhou Y, Deng R, Zhen M, Li J, Guan M, Jia W, Li X, Zhang Y, Yu T, Zou T, Lu Z, Guo J, Sun L, Shu C, Wang C. Biomaterials 2017; 133: 107
    • 9a Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC. Nature 1999; 401: 55
    • 9b Zhang J, Stevenson S, Dorn HC. Acc. Chem. Res. 2013; 46: 1548
  • 10 Campanera JM, Bo C, Poblet JM. Angew. Chem. Int. Ed. 2005; 44: 7230
  • 11 Wang T, Wang C. Acc. Chem. Res. 2014; 47: 450
    • 12a Ge Z, Duchamp JC, Cai T, Gibson HW, Dorn HC. J. Am. Chem. Soc. 2005; 127: 16292
    • 12b Stevenson S, Harich K, Yu H, Stephen RR, Heaps D, Coumbe C, Phillips JP. J. Am. Chem. Soc. 2006; 128: 8829
  • 13 Chaur MN, Valencia R, Rodríguez-Fortea A, Poblet JM, Echegoyen L. Angew. Chem. Int. Ed. 2009; 48: 1425
    • 14a Cardona CM, Kitaygorodskiy A, Echegoyen L. J. Am. Chem. Soc. 2005; 127: 10448
    • 14b Cardona CM, Kitaygorodskiy A, Ortiz A, Herranz MA, Echegoyen L. J. Org. Chem. 2005; 70: 5092
    • 14c Rodríguez-Fortea A, Campanera JM, Cardona CM, Echegoyen L, Poblet JM. Angew. Chem. Int. Ed. 2006; 45: 8176
    • 14d Cai T, Slebodnick C, Xu L, Harich K, Glass TE, Chancellor C, Fettinger JC, Olmstead MM, Balch AL, Gibson HW, Dorn HC. J. Am. Chem. Soc. 2006; 128: 6486
    • 14e Aroua S, Yamakoshi Y. J. Am. Chem. Soc. 2012; 134: 20242
    • 14f Aroua S, Garcia-Borràs M, Bölter MF, Osuna S, Yamakoshi Y. J. Am. Chem. Soc. 2015; 137: 58
    • 14g Ceron MR, Izquierdo M, Garcia-Borras M, Lee SS, Stevenson S, Osuna S, Echegoyen L. J. Am. Chem. Soc. 2015; 137: 11775
    • 14h Izquierdo M, Platzer B, Stasyuk AJ, Stasyuk OA, Voityuk AA, Cuesta S, Solà M, Guldi DM, Martín N. Angew. Chem. Int. Ed. 2019; 58: 6932
    • 14i Semivrazhskaya O, Aroua S, Yulikov M, Romero-Rivera A, Stevenson S, Garcia-Borras M, Osuna S, Yamakoshi Y. J. Am. Chem. Soc. 2020; 142: 12954
    • 15a Lukoyanova O, Cardona CM, Rivera J, Lugo-Morales LZ, Chancellor CJ, Olmstead MM, Rodriguez-Fortea A, Poblet JM, Balch AL, Echegoyen L. J. Am. Chem. Soc. 2007; 129: 10423
    • 15b Chaur MN, Melin F, Athans AJ, Elliott B, Walker K, Holloway BC, Echegoyen L. Chem. Commun. 2008; 2665
    • 15c Alegret N, Rodriguez-Fortea A, Poblet JM. Chem. Eur. J. 2013; 19: 5061
    • 15d Wei T, Pérez-Ojeda ME, Hirsch A. Chem. Commun. 2017; 53: 7886
    • 16a Yamada M, Akasaka T, Nagase S. Chem. Rev. 2013; 113: 7209
    • 16b Chen M, Bao L, Ai M, Shen W, Lu X. Chem. Sci. 2016; 7: 2331
    • 16c Chen M, Shen W, Peng P, Bao L, Zhao S, Xie S, Jin P, Fang H, Li F.-F, Lu X. J. Org. Chem. 2017; 82: 3500
    • 16d Shen W, Yang L, Wu Y, Bao L, Li Y, Jin P, Fang H, Xie Y, Lu X. J. Org. Chem. 2019; 84: 606
    • 17a Shu C, Xu W, Slebodnick C, Champion H, Fu W, Reid JE, Azurmendi H, Wang C, Harich K, Dorn HC, Gibson HW. Org. Lett. 2009; 11: 1753
    • 17b Izquierdo M, Cerón MR, Olmstead MM, Balch AL, Echegoyen L. Angew. Chem. Int. Ed. 2013; 52: 11826
    • 17c Yamada M, Abe T, Saito C, Yamazaki T, Sato S, Mizorogi N, Slanina Z, Uhlík F, Suzuki M, Maeda Y, Lian Y, Lu X, Olmstead MM, Balch AL, Nagase S, Akasaka T. Chem. Eur. J. 2017; 23: 6552
    • 18a Lee HM, Olmstead MM, Iezzi E, Duchamp JC, Dorn HC, Balch AL. J. Am. Chem. Soc. 2002; 124: 3494
    • 18b Iezzi E, Duchamp JC, Harich K, Glass TE, Lee HM, Olmstead MM, Balch AL, Dorn HC. J. Am. Chem. Soc. 2002; 124: 524
    • 18c Stevenson S, Stephen RR, Amos TM, Cadorette VR, Reid JE, Phillips JP. J. Am. Chem. Soc. 2005; 127: 12776
    • 18d Cai T, Xu L, Anderson MR, Ge Z, Zuo T, Wang X, Olmstead MM, Balch AL, Gibson HW, Dorn HC. J. Am. Chem. Soc. 2006; 128: 8581
    • 19a Iiduka Y, Ikenaga O, Sakuraba A, Wakahara T, Tsuchiya T, Maeda Y, Nakahodo T, Akasaka T, Kako M, Mizorogi N, Nagase S. J. Am. Chem. Soc. 2005; 127: 9956
    • 19b Wakahara T, Iiduka Y, Ikenaga O, Nakahodo T, Sakuraba A, Tsuchiya T, Maeda Y, Kako M, Akasaka T, Yoza K, Horn E, Mizorogi N, Nagase S. J. Am. Chem. Soc. 2006; 128: 9919
    • 19c Sato K, Kako M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S. Org. Lett. 2012; 14: 5908
    • 19d Sato K, Kako M, Suzuki M, Mizorogi N, Tsuchiya T, Olmstead MM, Balch AL, Akasaka T, Nagase S. J. Am. Chem. Soc. 2012; 134: 16033
    • 19e Kako M, Miyabe K, Sato K, Suzuki M, Mizorogi N, Wang W.-W, Yamada M, Maeda Y, Olmstead MM, Balch AL, Nagase S, Akasaka T. Chem. Eur. J. 2015; 21: 16411
    • 20a Li F.-F, Pinzón JR, Mercado BQ, Olmstead MM, Balch AL, Echegoyen L. J. Am. Chem. Soc. 2011; 133: 1563
    • 20b Wang G.-W, Liu T.-X, Jiao M, Wang N, Zhu S.-E, Chen C, Yang S, Bowles FL, Beavers CM, Olmstead MM, Mercado BQ, Balch AL. Angew. Chem. Int. Ed. 2011; 50: 4658
    • 20c Yang T, Nagase S, Akasaka T, Poblet JM, Houk KN, Ehara M, Zhao XJ. Am. Chem. Soc. 2015; 137: 6820
    • 21a Shustova NB, Popov AA, Mackey MA, Coumbe CE, Phillips JP, Stevenson S, Strauss SH, Boltalina OV. J. Am. Chem. Soc. 2007; 129: 11676
    • 21b Shustova NB, Chen Y.-S, Mackey MA, Coumbe CE, Phillips JP, Stevenson S, Popov AA, Boltalina OV, Strauss SH. J. Am. Chem. Soc. 2009; 131: 17630
    • 21c Yang SF, Chen CB, Jiao MZ, Tamm NB, Lanskikh MA, Kemnitz E, Troyanov SI. Inorg. Chem. 2011; 50: 3766
    • 21d Shustova NB, Peryshkov DV, Kuvychko IV, Chen Y.-S, Mackey MA, Coumbe CE, Heaps DT, Confait BS, Heine T, Phillips JP, Stevenson S, Dunsch L, Popov AA, Strauss SH, Boltalina OV. J. Am. Chem. Soc. 2011; 133: 2672
  • 22 Liu T.-X, Wei T, Zhu S.-E, Wang G.-W, Jiao M, Yang S, Bowles FL, Olmstead MM, Balch AL. J. Am. Chem. Soc. 2012; 134: 11956
    • 23a Liu B, Cong H, Li X, Yu B, Bao L, Cai W, Xie Y, Lu X. Chem. Commun. 2014; 50: 12710
    • 23b Bao L, Chen M, Shen W, Pan C, Ghiassi KB, Olmstead MM, Balch AL, Akasaka T, Lu X. Inorg. Chem. 2016; 55: 4075
  • 24 Bao L, Liu B, Li X, Pan C, Xie Y, Lu X. Dalton Trans. 2016; 45: 11606
    • 25a Konarev DV, Zorina LV, Khasanov SS, Popov AA, Otsuka A, Yamochi H, Saito G, Lyubovskaya RN. Chem. Commun. 2016; 52: 10763
    • 25b Voevodin A, Abella L, Castro E, Paley DW, Campos LM, Rodriguez-Fortea A, Poblet JM, Echegoyen L, Roy X. Chem. Eur. J. 2017; 23: 13305
    • 26a Li F.-F, Rodríguez-Fortea A, Peng P, Chavez GA. C, Poblet JM, Echegoyen L. J. Am. Chem. Soc. 2011; 133: 2760
    • 26b Li F.-F, Rodríguez-Fortea A, Poblet JM, Echegoyen L. J. Am. Chem. Soc. 2012; 134: 7480
  • 27 Li YB, Emge TJ, Moreno-Vicente A, Kopcha WP, Sun Y, Mansoor IF, Lipke MC, Hall GS, Poblet JM, Rodríguez-Fortea A, Zhang J. Angew. Chem. Int. Ed. 2021; 60: 25269
  • 28 Li YB, Kopcha WP, Emge TJ, Sun Y, Zhang J. Org. Lett. 2021; 23: 8867
    • 29a Gulevich AV, Zhdanko AG, Orru RV. A, Nenajdenko VG. Chem. Rev. 2010; 110: 5235
    • 29b Sadjadi S, Heravi MM, Nazari N. RSC Adv. 2016; 6: 53203
    • 29c Li J, Liu Y, Li C, Jie H, Jia X. Green Chem. 2012; 14: 1314
    • 29d Jie H, Li J, Li C, Jia X. Synlett 2012; 23: 2274
    • 30a Li J, Liu Y, Li C, Jia X. Adv. Synth. Catal. 2011; 353: 913
    • 30b Li J, Liu Y, Li C, Jia X. Chem. Eur. J. 2011; 17: 7409
    • 30c Li J, Wang N, Li C, Jia X. Chem. Eur. J. 2012; 18: 9645
    • 30d Jia S, Su S, Li C, Jia X, Li J. Org. Lett. 2014; 16: 5604
    • 30e Tang Z, Liu Z, An Y, Jiang R, Zhang X, Li C, Jia X, Li J. J. Org. Chem. 2016; 81: 9158
  • 31 Zhou Z, Magriotis PA. Org. Lett. 2005; 7: 5849
  • 32 Pinzón JR, Zuo T, Echegoyen L. Chem. Eur. J. 2010; 16: 4864
    • 33a Dubrovin V, Gan L.-H, Büchner B, Popov AA, Avdoshenko SM. Phys. Chem. Chem. Phys. 2019; 21: 8197
    • 33b Liu F, Spree L. Chem. Commun. 2019; 55: 13000
    • 33c Hao Y, Wang Y, Spree L, Liu F. Inorg. Chem. Front. 2021; 8: 122
  • 34 Semivrazhskaya O, Romero-Rivera A, Aroua S, Troyanov SI, Garcia-Borràs M, Stevenson S, Osuna S, Yamakoshi Y. J. Am. Chem. Soc. 2019; 141: 10988