Synthesis 2022; 54(11): 2629-2634
DOI: 10.1055/a-1736-1749
paper

Synthesis of Pyrethroids and Jasmonoids through Palladium-Catalyzed Cross-Coupling Reactions

Florencia Parpal
a   Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú 60000, Uruguay
,
Ana Paula Paullier
a   Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú 60000, Uruguay
,
Enrique Pandolfi
b   Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay
,
Viviana Heguaburu
a   Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú 60000, Uruguay
› Author Affiliations
Programa de Desarrollo de Ciencias Básicas (Grant No. PEDECIBA-PNUD/URU/06/004), Agencia Nacional de Investigación e Innovación (ANII; Grant Nos. POS_NAC_2012_1_8985 and POS_NAC_2014_1_10237'), and Comisión Sectorial de Investigación Científica.


Abstract

The synthesis of jasmone and related jasmonoids and pyrethroids is described. These compounds play a defensive role in plants and share a common cyclopentenone core with variations in the side chains. Jasmone, cinerone, allylrethrone, and derivatives were synthesized through π-allyl palladium cross-coupling of stannane derivatives. With selective hydrogenation, dihydrojasmone, and dihydrocinerone were also synthesized.

Supporting Information



Publication History

Received: 02 November 2021

Accepted after revision: 11 January 2022

Accepted Manuscript online:
11 January 2022

Article published online:
03 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Roth K, Vaupel E. Chem. Unserer Zeit 2017; 51: 162
    • 1b Staudinger H, Ružička L. Helv. Chim. Acta 1924; 7: 177
  • 2 Carson R. Silent Spring . Fawcett Crest; New York: 1964
  • 3 Crombie L, Elliott M. Prog. Chem. Org. Nat. Prod. 1961; 19: 120
  • 4 Crombie L, Edgar AJ. B, Harper SH, Lowe MW, Thompson D. J. Chem. Soc. 1950; 3552
  • 5 Pickett JA, Birkett MA, Bruce TJ, Chamberlain RG, Matthes MC, Napier JA, Smart LE, Woodcock CM. Phytochemistry 2007; 68: 22
    • 6a Ružička L, Pfeiffer M. Helv. Chim. Acta 1933; 16: 1208
    • 6b Birkett MA, Campbell CA. M, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Naiper JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 9329
  • 7 Dąbrowska P, Boland W. ChemBioChem 2007; 8: 2281
  • 8 Kato T, Kimura H, Masuko T, Shimosuka Y. Chem. Pharm. Bull. 1980; 28: 349
  • 9 Takahashi T, Hori K, Tsuji J. Chem. Lett. 1981; 1189
  • 10 Kataoka H, Yamada T, Goto K, Tsuji J. US Patent 4575570A, 1986
  • 11 Trost BM, Pinkerton AB. J. Org. Chem. 2001; 66: 7714
  • 12 Oshima K, Yamamoto H, Nozaki H. J. Am. Chem. Soc. 1973; 95: 4446
  • 13 Parpal F, Pandolfi E, Heguaburu V. Tetrahedron Lett. 2017; 58: 1965
  • 14 Del Valle L, Stille JK, Hegedus LS. J. Org. Chem. 1990; 55: 3019
    • 15a Djuardi E, Bovonsombar P, McNelis E. Synth. Commun. 1997; 27: 2497
    • 15b Shipe WD, Sorensen EJ. Org. Lett. 2002; 4: 2063
  • 16 Lamandè-Langle S, Abarbri M, Thibonnet J, Duchene A. J. Organomet. Chem. 2009; 694: 2368
  • 17 Asaba T, Katoh Y, Urabe D, Inoue M. Angew. Chem. Int. Ed. 2015; 54: 14457
  • 18 Kessler H, Oschkinat H, Griesinger C, Bermel W. J. Magn. Reson. 1986; 70: 106
  • 19 Liu W, Lu GH. Grasas Aceites 2018; 69: 268
  • 20 Ravasio N, Antenori M, Gargano M, Rossi M. J. Mol. Catal. 1992; 74: 267