Synlett 2022; 33(04): 301-306
DOI: 10.1055/a-1695-4979
synpacts

Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Vinyl Phosphines

Xu-Teng Liu
,
Yue Wu
,
We thank the financial support provided by the Ministry of Science and Technology of the People's Republic of China, National Key R&D Program of China (2018YFA0702001), the National Natural Science Foundation of China (NSFC; 21901235 and 22071224), the University of Science and Technology of China (USTC; KY2060000121, WK2060190095, and KY2060000143), the University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiative (YD2060002010), and the Anhui Provincial Natural Science Foundation (1908085MB34).


Abstract

Addition reaction to alkynes is an efficient strategy for constructing valuable alkenyl compounds. However, the elusive regioselectivity has been a persistent challenge. In the context of hydrophosphination reaction which could afford valuable P-stereogenic phosphines, the control of enantioselectivity as well as regioselectivity were especially tricky. Here, we highlighted our recent work on the nickel-catalyzed regio- and enantioselective hydrophosphination of unactivated alkynes with in situ generated secondary phosphines.

1 Introduction

2 Hydrophosphination of Alkynes

3 Derivatization Reactions

4 Mechanism Research

5 Summary and Outlook



Publication History

Received: 02 November 2021

Accepted after revision: 12 November 2021

Accepted Manuscript online:
12 November 2021

Article published online:
03 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Featherston AL, Kwon Y, Pompeo MM, Engl OD, Leahy DK, Miller SJ. Science 2021; 371: 702
  • 2 Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK. N. Engl. J. Med. 2020; 382: 929
  • 3 Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
  • 4 Ni H, Chan WL, Lu Y. Chem. Rev. 2018; 118: 9344
  • 5 Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
  • 6 Imamoto T. Chem. Rec. 2016; 16: 2655
  • 7 Xu G, Senanayake CH, Tang W. Acc. Chem. Res. 2019; 52: 1101
  • 8 Lagasse F, Kagan HB. Chem. Pharm. Bull. 2000; 48: 315
  • 9 Vidal F, Jakle F. Angew. Chem. Int. Ed. 2019; 58: 5846
  • 10 Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ. J. Am. Chem. Soc. 1977; 99: 5946
  • 11 Knouse KW, Justine N, Schmidt MA, Zheng B, Vantourout JC, Kingston C, Mercer SE, Mcdonald IM, Olson RE, Zhu Y, Hang C, Zhu J, Yuan CX, Wang QG, Park P, Eastgate MD, Baran PS. Science 2018; 361: 1234
  • 12 Han ZS, Goyal N, Herbage MA, Sieber JD, Qu B, Xu Y, Li Z, Reeves JT, Desrosiers J.-N, Ma S, Grinberg N, Lee H, Mangunuru HP. R, Zhang Y, Krishnamurthy D, Lu BZ, Song JJ, Wang G, Senanayake CH. J. Am. Chem. Soc. 2013; 135: 2474
  • 13 Zijlstra H, León T, de Cózar A, Guerra CF, Byrom D, Riera A, Verdaguer X, Bickelhaupt FM. J. Am. Chem. Soc. 2013; 135: 4483
  • 14 Diesel J, Cramer N. ACS Catal. 2019; 9: 9164
  • 15 Lemouzy S, Giordano L, Hérault D, Buono G. Eur. J. Org. Chem. 2020; 3351
  • 16 Harvey JS, Gouverneur V. Chem. Commun. 2010; 46: 7477
  • 17 Beaud R, Phipps RJ, Gaunt MJ. J. Am. Chem. Soc. 2016; 138: 13183
  • 18 Zhang Y, He H, Wang Q, Cai Q. Tetrahedron Lett. 2016; 57: 5308
  • 19 Liu XT, Zhang YQ, Han XY, Sun SP, Zhang QW. J. Am. Chem. Soc. 2019; 141: 16584
  • 20 Dai Q, Li W, Li Z, Zhang J. J. Am. Chem. Soc. 2019; 141: 20556
  • 21 Liu S, Zhang Z, Xie F, Butt NA, Sun L, Zhang W. Tetrahedron: Asymmetry 2012; 23: 329
  • 22 Wang M, Zhang L, Huo X, Zhang Z, Yuan Q, Li P, Chen J, Zou Y, Wu Z, Zhang W. Angew. Chem. Int. Ed. 2020; 59: 20814
  • 23 DiRocco DA, Ji Y, Sherer EC, Klapars A, Reibarkh M, Dropinski J, Mathew R, Maligres P, Hyde AM, Limanto J, Brunskill A, Ruck RT, Campeau LC, Davies IW. Science 2017; 356: 426
  • 24 Chan VS, Stewart IC, Bergman RG, Toste FD. J. Am. Chem. Soc. 2006; 128: 2786
  • 25 Moncarz JR, Laritcheva NF, Glueck DS. J. Am. Chem. Soc. 2002; 124: 13356
  • 26 Kovacik I, Wicht DK, Grewal NS, Glueck DS, Incarvito CD, Guzei IA, Rheingold AL. Organometallics 2000; 19: 950
  • 27 Huang Y, Li Y, Leung P.-H, Hayashi T. J. Am. Chem. Soc. 2014; 136: 4865
  • 28 Balázs LB, Huang Y, Khalikuzzaman JB, Li Y, Pullarkat SA, Leung PH. J. Org. Chem. 2020; 85: 14763
  • 29 Feng J.-J, Chen X.-F, Shi M, Duan W.-L. J. Am. Chem. Soc. 2010; 132: 5562
  • 30 Zhang S, Xiao J.-Z, Li Y.-B, Shi C.-Y, Yin L. J. Am. Chem. Soc. 2021; 143: 9912
  • 31 Li YB, Tian H, Yin L. J. Am. Chem. Soc. 2020; 142: 20098
  • 32 Delacroix O, Gaumont A. Curr. Org. Chem. 2005; 30: 3249
  • 33 Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
  • 34 Bange CA, Waterman R. Chem. Eur. J. 2016; 22: 12598
  • 35 Chan VS, Chiu M, Bergman RG, Toste FD. J. Am. Chem. Soc. 2009; 131: 6021
  • 36 Liu XT, Han XY, Wu Y, Sun YY, Gao L, Huang Z, Zhang QW. J. Am. Chem. Soc. 2021; 143: 11309
  • 37 Kazankova MA, Efimova IV, Kochetkov AN, Afanas’Ev VV, Dixneuf PH. Synlett 2001; 497
  • 38 Wang C, Huang K, Ye J, Duan W.-L. J. Am. Chem. Soc. 2021; 143: 5685
  • 39 Toshiyuki O, Imamoto T. Heteroat. Chem. 1992; 3: 563
  • 40 Fritzsche H, Hasserodt U, Korte F. Chem. Ber. 1964; 97: 1988
  • 41 Benaglia M, Rossi S. Org. Biomol. Chem. 2010; 8: 3824
  • 42 Denmark SE, Kalyani D, Collins WR. J. Am. Chem. Soc. 2010; 132: 15752
  • 43 Denmark SE, Hartmann E, Kornfilt DJ, Wang H. Nat. Chem. 2014; 6: 1056
  • 44 Liu S, Kumatabara Y, Shirakawa S. Green Chem. 2016; 18: 331
  • 45 Grabulosa A, Granell J, Font-Bardia M. J. Organomet. Chem. 2019; 896: 51
  • 46 Cruchter T, Larionov VA. Coord. Chem. Rev. 2018; 376: 95
  • 47 Yang Z, Gu X, Han L.-B, Wang J. Chem. Sci. 2020; 11: 7451
  • 48 Chen T, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2018; 140: 3139