Synlett 2022; 33(03): 283-287
DOI: 10.1055/a-1679-7225
letter

Iron-Catalyzed Synthesis of Pyridines from α,β-Unsaturated Ketoxime Acetates and N-Acetyl Enamides

Gaochen Xu
,
Huan Yan
,
Sai Zhang
,
Qinghuan Wu
,
Jindian Duan
,
Kai Guo
We gratefully acknowledge the National Natural Science Foundation of China (22078150), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1826) and the Natural Science Research Projects of Jiangsu Higher Education (19KJB150027) for their financial support.


Abstract

A new method of FeCl2-catalyzed [4+2] annulation of α,β-unsaturated ketoxime acetates with N-acetyl enamides in batch and flow is reported. The current strategy features low-cost catalytic system, use of electron-rich olefins, operational simplicity, and broad substrate scope, thus providing a facile and efficient access to substituted pyridines in moderate to good yields.

Supporting Information



Publication History

Received: 18 October 2021

Accepted: 27 October 2021

Accepted Manuscript online:
27 October 2021

Article published online:
22 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhou Y, Zhu X, Zhang L, Tang C, Feng B. Chem. Biol. Drug Des. 2019; 93: 67
    • 1b Huang Y, Wang Q, Wu Y. J. Pharm. Sci. 2018; 107: 1633
    • 1c Guan A, Liu C, Sun X, Xie Y, Wang M. Bioorg. Med. Chem. 2016; 24: 342
    • 2a Byrne JP, Kitchen JA, Gunnlaugsson T. Chem. Soc. Rev. 2014; 43: 5302
    • 2b Happ B, Winter A, Hager MD, Schubert US. Chem. Soc. Rev. 2012; 41: 2222
    • 2c Sasabe H, Kido J. Chem. Mater. 2011; 23: 621
    • 2d De Rycke N, Couty F, David OR. P. Chem. Eur. J. 2011; 17: 12852

      For recent selected reviews, see:
    • 3a Vchislo NV. Asian J. Org. Chem. 2019; 8: 1207
    • 3b Pomarański P, Czarnocki ZA. Synthesis 2019; 51: 587
    • 3c Neely JM, Rovis T. Org. Chem. Front. 2014; 1: 1010
    • 3d Allais C, Grassot JM, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
    • 3e Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 4a Zhan J, Wu M, Wei D, Wei B, Jiang Y, Yu W, Han B. ACS Catal. 2019; 9: 4179
    • 4b Bai D, Wang X, Zheng G, Li X. Angew. Chem. Int. Ed. 2018; 57: 6633
    • 4c Xia Y, Cai J, Huang H, Deng G. Org. Biomol. Chem. 2018; 16: 124
    • 4d Tan W, Ong YJ, Yoshikai N. Angew. Chem. Int. Ed. 2017; 56: 8240
    • 4e Huang H, Cai J, Xie H, Tan J, Li F, Deng G. Org. Lett. 2017; 19: 3743
    • 4f Zheng M, Chen P, Wu W, Jiang H. Chem. Commun. 2016; 52: 84
    • 4g Huang H, Cai J, Tang L, Wang Z, Li F, Deng G. Org. Chem. 2016; 81: 1499
    • 4h Chu H, Sun S, Yu J, Cheng J. Chem. Commun. 2015; 51: 13327
    • 4i Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
    • 4j Jiang H, Yang J, Tang X, Li J, Wu W. J. Org. Chem. 2015; 80: 8763
    • 4k Wei Y, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 3756
    • 4l Shi Z, Loh T. Angew. Chem. Int. Ed. 2013; 52: 8584
    • 5a Liu S, Liebeskind LS. J. Am. Chem. Soc. 2008; 130: 6918
    • 5b Parthasarathy K, Jeganmohan M, Cheng C. Org. Lett. 2008; 10: 325
    • 5c Too PC, Wang Y, Chiba S. Org. Lett. 2010; 12: 5688
    • 5d Too PC, Noji T, Lim YJ, Li X, Chiba S. Synlett 2011; 2789
    • 5e Martin RM, Bergman RG, Ellman JA. J. Org. Chem. 2012; 77: 2501
    • 5f Hyster TK, Rovis T. Chem. Commun. 2011; 47: 11846
    • 5g Yoshida Y, Kurahashi T, Matsubara S. Chem. Lett. 2012; 41: 1498
    • 5h Zhu C, Zeng H, Liu C, Chen F, Jiang H. Org. Lett. 2019; 21: 4900
    • 5i Yamada T, Hashimoto Y, Tanaka K, Morita N, Tamura O. J. Org. Chem. 2020; 85: 12315
    • 5j Mohanty SR, Pati BV, Banjare SK, Adhikari GK. D, Ravikumar PC. J. Org. Chem. 2021; 86: 1074
    • 6a Neely JM, Rovis T. J. Am. Chem. Soc. 2013; 135: 66
    • 6b Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
    • 6c Romanov-Michailidis F, Sedillo KF, Neely JM, Rovis T. J. Am. Chem. Soc. 2015; 137: 8892
  • 7 Zhao D, Lied F, Glorius F. Chem. Sci. 2014; 5: 2869
  • 8 Yamada T, Hashimoto Y, Tanaka K, Morita N, Tamura O. Org. Lett. 2021; 23: 1659
    • 9a Fu X, Yang J, Deng K, Shao L, Xia C, Ji Y. Org. Lett. 2019; 21: 3505
    • 9b Fu X, Tang S, Yang J, Zhang L, Xia C, Ji Y. Eur. J. Org. Chem. 2019; 5974
  • 10 Xie Y, Li Y, Chen X, Liu Y, Zhang W. Org. Chem. Front. 2018; 5: 1698
    • 11a Tu L, Gao L, Wang X, Shi R, Ma R, Li J, Lan X, Zheng Y, Liu J. J. Org. Chem. 2021; 86: 559
    • 11b Kallweit I, Laue M, Schneider C. Org. Lett. 2020; 22: 9065
    • 11c Feng F, Li S, Cheung C, Ma J. Org. Lett. 2019; 21: 8419
    • 11d Wang Z, You C, Wang C, Weng Z. J. Org. Chem. 2019; 84: 14926
    • 11e Yang G, Zhao Q, Zhang Z, Zheng H, Chen L, Li X. J. Org. Chem. 2019; 84: 7883
    • 11f Shi P, Li S, Hu L, Wang C, Loh T, Hu X. Chem. Commun. 2019; 55: 11115
    • 11g Yang Y, Yang G, Cheng C, Li Y, Zhang J, Feng W, Zhao Y, Tang L. Org. Lett. 2019; 21: 2236
    • 11h Zhang Z, Zhu C, Miao M, Han J, Ju T, Song L, Ye J, Li J, Yu D. Chin. J. Chem. 2018; 36: 430
    • 11i Santhini PV, Nimisha G, John J, Suresh E, Varmaab RL, Radhakrishnan KV. Chem. Commun. 2017; 53: 1848
    • 11j Zhang W, Yu W, Yan Q, Liu Z, Zhang Y. Org. Chem. Front. 2017; 4: 2428
    • 11k Liu K, Zou M, Lei A. J. Org. Chem. 2016; 81: 7088
    • 11l Zhou X, Yan H, Ma C, He Y, Li Y, Cao J, Yan R, Huang G. J. Org. Chem. 2016; 81: 25
    • 11m Liu C, Han F. Chem. Commun. 2015; 51: 11844
    • 11n Yu W, Chen J, Gao K, Liu Z, Zhang Y. Org. Lett. 2014; 16: 4870
    • 11o Zhao M, Ren Z, Wang Y, Guan Z. Org. Lett. 2014; 16: 608
    • 11p Xu Y, He T, Zhang Q, Loh T. Chem. Commun. 2014; 50: 2784
    • 11q Wang L, Ackermann L. Org. Lett. 2013; 15: 176
    • 11r Zhao M, Ren Z, Wang Y, Guan Z. Chem. Commun. 2012; 48: 8105
    • 12a Duan J, Zhang L, Xu G, Chen H, Ding X, Mao Y, Rong B, Zhu N, Guo K. J. Org. Chem. 2020; 85: 8157
    • 12b Duan J, Xu G, Rong B, Yan H, Zhang S, Wu Q, Zhu N, Guo K. Green Synth. Catal. 2021; 2: 237
  • 13 General Procedure for the Synthesis of Pyridines In a sealed tube, ketoxime-enoates 1 (0.2 mmol, 1 equiv), N-acetyl enamides 2 (0.4 mmol, 2 equiv), and FeCl2 (0.02 mmol, 10 mol%) were mixed in DCE (2 mL) and stirred at 120 °C for 8 h. Upon completion of the reaction, the mixture was then allowed to cool down to room temperature and the reaction solution was concentrated under vacuum. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate) on silica gel to give the corresponding pyridines 3. Ethyl 2,6-Diphenylisonicotinate (3aa) Yield 80% (49 mg); white sold; mp 94–95 °C. 1H NMR (400 MHz, CDCl3): d = 8.26 (s, 2 H), 8.21 (dd, J = 8.3, 1.3 Hz, 4 H), 7.55–7.47 (m, 6 H), 4.49 (q, J = 7.1 Hz, 2 H), 1.47 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): d = 165.4, 157.6, 139.3, 138.5, 129.3, 128.6, 126.9, 117.6, 61.7, 14.2 ppm. HRMS (ESI-TOF): m/z calcd for C20H18NO2 [M + H]+:304.1332; found: 304.1345.
    • 14a Zhang Y, Yin Z, Wang H, Wu X. Chem. Commun. 2020; 56: 7045
    • 14b Du F, Li S, Jiang K, Zeng R, Pan X, Lan Y, Chen Y, Wei Y. Angew. Chem. Int. Ed. 2020; 59: 23755
    • 14c Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Angew. Chem. Int. Ed. 2020; 59: 19222
    • 14d Lou J, He Y, Li Y, Yu Z. Adv. Synth. Catal. 2019; 361: 3787
    • 14e Zhang Y, Yin Z, Wu X. Adv. Synth. Catal. 2019; 361: 3223
    • 14f Gu Y, Duan X, Chen L, Ma Z, Gao P, Guo L. Org. Lett. 2019; 21: 917
    • 14g Zhao J, Duan X, Gu Y, Gao P, Guo L. Org. Lett. 2018; 20: 4614
    • 14h Shimbayashi T, Nakamoto D, Okamoto K, Ohe K. Org. Lett. 2018; 20: 3044
    • 14i Yang L, Gao P, Duan X, Gu Y, Guo L. Org. Lett. 2018; 20: 1034
    • 14j Shimbayashi T, Okamoto K, Ohe K. Chem. Asian J. 2018; 13: 395
    • 14k Zhao J, Gao P, Duan X, Guo L. Adv. Synth. Catal. 2018; 360: 1775
    • 14l Yi Y, Zhao M, Ren Z, Wang Y, Guan Z. Green Chem. 2017; 19: 1023
    • 14m Zhu Z, Tang X, Li J, Li X, Wu W, Deng G, Jiang H. Org. Lett. 2017; 19: 1370
    • 14n Yang H, Selander N. Chem. Eur. J. 2017; 23: 1779
    • 15a Deb I, Yoshikai N. Org. Lett. 2013; 15: 4254
    • 15b Zhang Z, Li J, Zhang G, Ma N, Liu Q, Liu T. J. Org. Chem. 2015; 80: 6875