Synlett 2022; 33(18): 1868-1872
DOI: 10.1055/a-1679-7161
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

Synthesis of Novel Chiral Phenanthroline Ligands and a Copper Complex

Jingjing Tang
,
Jian Li
,
Xueyan Yang
,
Zhipeng Zhang
This work was supported by the National Natural Science Foundation of China (21702059), Shanghai Pujiang Program (18PJ1402200) and Fundamental Research Funds for the Central Universities (222201814014, JKVJ1211010, JKVJ12001010).


Abstract

A novel class of chiral multidentate ligands has been designed and synthesized from the important classic ligand 1,10-phenanthroline and amino acids. The ligands were proven to be able to coordinate with copper(2+) ion by the formation of a novel chiral copper complex, the structure of which was determined by single-crystal X-ray diffraction.

Supporting Information



Publication History

Received: 23 September 2021

Accepted after revision: 27 October 2021

Accepted Manuscript online:
27 October 2021

Article published online:
11 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Summers LA. Adv. Heterocycl. Chem. 1978; 22: 1
    • 1b Sammes PG, Yahioglu G. Chem. Soc. Rev. 1994; 23: 327
    • 1c Luman CR, Castellano FN. Comprehensive Coordination Chemistry II, Vol. 1. McCleverty JA, Meyer TJ. Elsevier; Oxford: 2004. Chap. 1.1, 25
    • 2a Lavie-Cambot A, Cantuel M, Leydet Y, Jonusauskas G, Bassani DM, McClenaghan ND. Coord. Chem. Rev. 2008; 252: 2572
    • 2b Bencini A, Lippolis V. Coord. Chem. Rev. 2010; 254: 2096
    • 3a Sigman DS, Mazunder A, Perrin DM. Chem. Rev. 1993; 93: 2295
    • 3b Pogozelski WK, Tullius TD. Chem. Rev. 1998; 98: 1089
    • 3c Ji L.-N, Zou X.-H, Liu J.-G. Coord. Chem. Rev. 2001; 216: 513
    • 3d Sigman DS, Landgraf R, Perrin DM, Pearson L. Metal Ions in Biological Systems, Vol. 33. Sigel A, Sigel H. Dekker; New York: 1996. Chap. 16, 485
    • 4a Amabilino DB, Stoddart JF. Chem. Rev. 1995; 95: 2725
    • 4b Raymo FM, Stoddart JF. Chem. Rev. 1999; 99: 1643
    • 4c Armaroli N. Chem. Soc. Rev. 2001; 30: 113
    • 4d Saha ML, Neogi S, Schmittel M. Dalton Trans. 2014; 43: 3815

      For selected examples of nonasymmetric reactions catalyzed by metal/phen-based ligands:
    • 5a Carney JM, Donoghue PJ, Wuest WM, Wiest O, Helquist P. Org. Lett. 2008; 10: 3903
    • 5b Shirakawa E, Ito K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 5c Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
    • 5d Peng J, Kishi Y. Org. Lett. 2012; 14: 86
    • 5e Limberger J, Leal BC, Back DF, Dupont J, Monteiro AL. Adv. Synth. Catal. 2012; 354: 1429
    • 5f Yu P, Zhang G, Chen F, Cheng J. Tetrahedron Lett. 2012; 53: 4588
    • 5g Williams TJ, Fairlamb IJ. S. Tetrahedron Lett. 2013; 54: 2906
    • 5h Cho SH, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8157
    • 5i Li X, Yang F, Wu Y, Wu Y. Org. Lett. 2014; 16: 992
    • 5j Yamauchi T, Shibahara F, Murai T. J. Org. Chem. 2014; 79: 7185
    • 5k Yamauchi T, Shibahara F, Murai T. Org. Lett. 2015; 17: 5392
    • 5l Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
    • 5m Egger L, Guénée L, Bürgi T, Lacour J. Adv. Synth. Catal. 2017; 359: 2918
    • 5n Shevlin M, Guan X, Driver TG. ACS Catal. 2017; 7: 5518
    • 5o Liu T, Myers MC, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 306
    • 5p Wang F, Wang D, Zhou Y, Liang L, Lu R, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2018; 57: 7140
    • 5q Shan X.-H, Yang B, Zheng H.-X, Qu J.-P, Kang Y.-B. Org. Lett. 2018; 20: 7898
    • 5r Yamamoto K, Li JK, Garber JA. O, Rolfes JD, Boursalian GB, Borghs JC, Genicot C, Jacq J, van Gastel M, Neese F, Ritter T. Nature 2018; 554: 511
    • 5s Zhang H, Zhou Y, Tian P, Jiang C. Org. Lett. 2019; 21: 1921
    • 5t Lo PK. T, Chen Y, Willis MC. ACS Catal. 2019; 9: 10668
    • 5u Drapeau MP, Bahri J, Lichte D, Gooβen LJ. Angew. Chem. Int. Ed. 2019; 58: 892
    • 5v Karmel C, Chen Z, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 7063
    • 5w Mondal R, Sinha S, Das S, Chakraborty G, Paul ND. Adv. Synth. Catal. 2020; 362: 594
    • 5x Zhu L, Li J, Yang J, Au-Yeung HY. Chem. Sci. 2020; 11: 13008
    • 5y Cho YH, Kim JH, An H, Ahn K.-H, Kang EJ. Adv. Synth. Catal. 2020; 362: 2183
    • 5z Larsen MA, Oeschger RJ, Hartwig JF. ACS Catal. 2020; 10: 3415
    • 5aa Sarkar A, Formenti D, Ferretti F, Kreyenschulte C, Bartling S, Junge K, Beller M, Ragaini F. Chem. Sci. 2020; 11: 6217
    • 5ab DeMent PM, Liu C, Wakpal J, Schaugaard RN, Schlegel HB, Nguyen HM. ACS Catal. 2021; 11: 2108

      For selected examples of enantioselective reactions catalyzed by metal/phen-based chiral ligands, see:
    • 6a Schoffers E. Eur. J. Org. Chem. 2003; 1145
    • 6b Chelucci G, Thummel RP. Chem. Rev. 2002; 102: 3129
    • 6c Gladiali S, Chelucci G, Chessa G, Delogu G, Soccolini F. J. Organomet. Chem. 1987; 327: C15
    • 6d Gladiali S, Pinna L, Delogu G, Graf E, Brunner H. Tetrahedron: Asymmetry 1990; 1: 937
    • 6e Gladiali S, Pinna L, Delogu G, De Martin S, Zassinovich G, Mestroni G. Tetrahedron: Asymmetry 1990; 1: 635
    • 6f Kandzia C, Steckhan E, Knoch F. Tetrahedron: Asymmetry 1993; 4: 39
    • 6g Peña-Cabrera E, Norrby P.-O, Sjögren M, Vitagliano A, De Felice V, Oslob J, Ishii S, O’Neill D, Åkermark B, Helquist P. J. Am. Chem. Soc. 1996; 118: 4299
    • 6h Chelucci G, Pinna GA, Saba A, Sanna G. J. Mol. Catal. A: Chem. 2000; 159: 423
    • 6i Gladiali S, Chelucci G, Mudadu MS, Gastaut M.-A, Thummel RP. J. Org. Chem. 2001; 66: 400
    • 6j Chelucci G, Iuliano A, Muroni D, Saba A. J. Mol. Catal. A: Chem. 2003; 191: 29
    • 6k Puglisi A, Benaglia M, Annunziata R, Bologna A. Tetrahedron Lett. 2003; 44: 2947
    • 6l Nishikawa Y, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 8432
    • 6m Naganawa Y, Namba T, Aoyama T, Shoji K, Nishiyama H. Chem. Commun. 2014; 50: 13224
    • 6n Naganawa Y, Komatsu H, Nishiyama H. Chem. Lett. 2015; 44: 1652
    • 6o Naganawa Y, Namba T, Kawagishi M, Nishiyama H. Chem. Eur. J. 2015; 21: 9319
    • 6p Naganawa Y, Aoyama T, Nishiyama H. Org. Biomol. Chem. 2015; 13: 11499
    • 6q Naganawa Y, Abe H, Nishiyama H. Synlett 2016; 27: 1973
    • 6r Naganawa Y, Nishiyama H. Chem. Rec. 2016; 16: 2573
    • 6s Naganawa Y, Aoyama T, Kato K, Nishiyama H. ChemistrySelect 2016; 1: 1938
    • 6t Wojaczyńska E, Skarżewski J, Sidorowicz Ł, Wieczorek R, Wojaczyński J. New J. Chem. 2016; 40: 9795
    • 6u Tamura M, Ogata H, Ishida Y, Takahashi Y. Tetrahedron Lett. 2017; 58: 3808
    • 6v Naganawa Y, Abe H, Nishiyama H. Chem. Commun. 2018; 54: 2674
    • 6w Annapureddy RR, Jandl C, Bach T. J. Am. Chem. Soc. 2020; 142: 7374
  • 7 Krapcho AP, Lanza JB. Org. Prep. Proced. Int. 2007; 39: 603
  • 8 2,2′-(1,10-Phenanthroline-2,9-diyl)dibenzaldehyde (7) To a solution of 2,9-dichloro-1,10-phenanthroline (6; 1.50 g, 6.04 mmol) in 1,4-dioxane (80.0 mL) and H2O (8.0 mL) were added (2-formylphenyl)boronic acid (2.268 g, 15.12 mmol), Na2CO3 (2.564 g, 24.19 mmol), and Pd(PPh3)4 (0.60 mmol, 699 mg), and the mixture was stirred at 100 °C under N2 for 12 h. Upon completion of the reaction, the mixture was cooled to r.t. and filtered through a pad of Celite. The 1,4-dioxane was evaporated under reduced pressure, and the resulting mixture was extracted with CH2Cl2 (×3). The combined organic layers were washed with brine, dried (Na2SO4), and concentrated. The residue was purified by column chromatography [silica gel, CH2Cl2–MeOH (80:1)] to give a yellow solid; yield: 1.361 g (58%); mp 160–161 °C. 1H NMR (400 MHz, CHCl3): δ = 10.42 (s, 2 H), 8.38 (d, J = 8.4 Hz, 2 H), 8.06 (dd, J = 8.0, 1.2 Hz, 2 H), 7.94 (d, J = 8.0 Hz, 2 H), 7.91 (d, J = 7.2 Hz, 2 H), 7.88 (s, 2 H), 7.71 (td, J = 7.6, 1.2 Hz, 2 H), 7.56 (t, J = 7.6 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 192.53, 156.30, 145.92, 143.30, 136.84, 135.72, 133.18, 130.88, 129.23, 128.59, 127.78, 126.75, 123.93. HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H17N2O2: 389.1285; found: 389.1276.
  • 9 Diamino Diester 8a; Typical Procedure A dried 50 mL Schlenk flask was charged with methyl l-phenylalaninate hydrochloride (397 mg, 1.84 mmol), intermediate 7a (300 mg, 0.77 mmol), and MgSO4 (222 mg, 1.84 mmol) under N2. CH2Cl2 (10 mL) was added, the mixture was cooled to 0 °C, and Et3N (255 μL, 1.84 mmol) was added. The mixture was stirred at 0 °C for 0.5 h; it was then allowed to warm to r.t. and stirred for 12 h. The mixture was then cooled again to 0 °C before NaBH(OAc)3 (1.632 g, 7.7 mmol) was added. The resulting mixture was stirred at 0 °C for 0.5 h, warmed slowly to r.t., and stirred overnight. The reaction was quenched with H2O, and the product was extracted with CH2Cl2 (×3). The organic layers were combined, dried (Na2SO4), and concentrated, and the residue was purified by column chromatography [silica gel, CH2Cl2–MeOH (80:1)] to give a yellow solid; yield: 386 mg (70%); mp 106–107 °C; [α]D 20 +45.6 (c = 0.25, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.33 (d, J = 8.4 Hz, 2 H), 7.91 (s, 2 H), 7.85 (d, J = 8.0 Hz, 2 H), 7.65 (d, J = 7.6 Hz, 2 H), 7.51 (d, J = 5.6 Hz, 2 H), 7.44 (t, J = 6.4 Hz, 2 H), 7.34 (t, J = 7.2 Hz, 2 H), 7.11–7.05 (m, 6 H), 6.90–6.82 (m, 4 H), 4.06–3.82 (m, 4 H), 3.51–3.67 (m, 2 H), 3.08 (s, 6 H), 2.89 (s, 2 H), 2.41–2.59 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 171.70, 158.72, 144.92, 140.88, 137.50, 136.26, 133.13, 132.74, 130.48, 129.58, 129.39, 129.21, 128.28, 127.89, 126.76, 126.73, 124.36, 61.73, 51.60, 49.60, 36.93. HRMS (ESI-TOF): m/z [M + H]+ calcd for C46H43N4O4: 715.3279; found: 715.3263.
  • 10 Chiral Phenanthroline Ligand 9a; Typical ProcedureTo a solution of diester 8a (100 mg, 0.14 mmol) in MeOH (10 mL) and H2O (2 mL) was added NaOH (112 mg, 2.8 mmol) at r.t., and the mixture was heated to 60 °C with stirring for 12 h. Upon completion of the reaction, the pH of the solution was adjusted to 3–4 by addition of 1.0 M aq HCl. The solvent was then removed under reduced pressure and the crude product was dissolved in MeOH. The solution was filtered and concentrated, and the crude product was crystallized from MeOH to give a yellow solid; yield: 96 mg (91%); mp 200–201 °C; [α]D 20 –88.8 (c 0.25, MeOH). 1H NMR (400 MHz, DMSO-d 6): δ = 8.71 (d, J = 8.4 Hz, 2 H), 8.17 (s, 2 H), 8.08 (d, J = 8.4 Hz, 2 H), 7.72 (d, J = 7.2 Hz, 2 H), 7.67–7.61 (m, 2 H), 7.56–7.45 (m, 4 H), 7.09–7.00 (m, 6 H), 6.88–6.79 (m, 4 H), 4.18 (d, J = 13.2 Hz, 2 H), 4.09 (d, J = 12.8 Hz, 2 H), 3.45 (t, J = 7.0 Hz, 2 H), 2.94–2.76 (m, 2 H), 2.76–2.64 (m, 2 H). 13C NMR (101 MHz, DMSO-d 6): δ = 170.09, 157.68, 143.91, 140.81, 138.30, 136.16, 132.41, 131.46, 130.53, 129.29, 129.24, 128.92, 127.92, 127.67, 126.75, 126.43, 124.37, 60.60, 47.19, 34.97. HRMS (ESI-TOF): m/z [M + H]+ calcd for C44H39N4O4: 687.2966; found: 687.2962.
  • 11 Copper Complex 10a To a solution of 9a (100 mg, 0.13 mmol) in MeOH (10 mL) was added NaH (112 mg, 60% dispersion in mineral oil, 2.8 mmol), and the mixture was stirred at r.t. for 0.5 h. A solution of CuCl2 in MeOH (1.0 mL) was added dropwise to the mixture, which was then heated to 40 °C and stirred for 5 h. After cooling to r.t., the mixture was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by crystallization from MeOH–Et2O to give a deep-blue solid; yield: 21 mg (40%); mp 210–211 °C. HRMS (ESI-TOF): m/z [M + H]+ calcd for C44H38ClCuN4O4: 784.1872; found: 784.1863.
  • 12 CCDC 2106610 contains the supplementary crystallographic data for compound 10a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures