Synlett 2021; 32(20): 2075-2079
DOI: 10.1055/a-1670-2290
letter

A Metal-Free β-Stereoselective Synthesis of 2-Deoxy-C-arylglycosides: Synthesis of 5-Aza Analogues of Aquayamycin

Yuling Mei
,
Nan Jiang
,
Yu Yang
,
Wan Zhang
,
Saifeng Qiu
,
Hong Guo
,
The project was partially funded by the Natural Science Foundation of Shanghai (11ZR1410400) and by the Large Instruments Open Foundation of East China Normal University (20162015).


Abstract

A convenient protocol for the β-stereoselective synthesis of 2-deoxy-C-arylglycosides has been developed. This reaction takes place in one step by using I2/Et3SiH to activate a glycosyl acetate to generate a glycosyl iodide intermediate in situ, which is captured by a naphthol; this is followed by a Fries-like O-to-C glycoside rearrangement to afford a β-C-aryl glycoside selectively. The approach is applicable to a wide range of naphthol moieties, and its utility was demonstrated in syntheses of 5-aza analogues of aquayamycin.

Supporting Information



Publication History

Received: 21 July 2021

Accepted after revision: 15 October 2021

Publication Date:
15 October 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Yang X, He Z, Zheng Y, Wang N, Mulinge M, Schmit J, Steinmetz A, Seguin-Devaux C. Molecules 2021; 26: 2455
    • 1b Bililign T, Griffith BR, Thorson JS. Nat. Prod. Rep. 2005; 22: 742
    • 2a Voitsekhovskaia I, Paulus C, Dahlem C, Rebets Y, Nadmid S, Zapp J, Axenov-Gribanov D, Rückert C, Timofeyev M, Kalinowski J, Kiemer AK, Luzhetskyy A. Microorganisms 2020; 8: 680
    • 2b Hu Z, Qin L, Wang Q, Ding W, Chen Z, Ma Z. Nat. Prod. Res. 2016; 30: 2551
    • 2c Fotso S, Mahmud T, Zabriskie TM, Santosa DA, Sulastri Sulastri, Proteau PJ. J. Antibiot. 2008; 61: 449
    • 2d Zhu L, Luzhetskyy A, Luzhetska M, Mattingly C, Adams V, Bechthold A, Rohr J. ChemBioChem 2007; 8: 83
    • 3a Wang Y, Chen H, Sheng R, Fu Z, Fan J, Wu W, Tu Q, Guo R. Mar. Drugs 2021; 19: 218
    • 3b Qu X.-Y, Ren J.-W, Peng A.-H, Lin S.-Q, Lu D.-D, Du Q.-Q, Liu L, Li X, Li E.-W, Xie W.-D. Mar. Drugs 2019; 17: 277
    • 3c Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. Eur. J. Med. Chem. 2019; 171: 129
    • 3d Peng A, Qu X, Liu F, Li X, Li E, Xie W. Mar. Drugs 2018; 16: 470
    • 4a He Q, Li L, Yang T, Li R, Li A. PLoS One 2015; 10: e0132431
    • 4b Salaski EJ, Krishnamurthy G, Ding W.-D, Yu K, Insaf SS, Eid C, Shim J, Levin JI, Tabei K, Toral-Barza L, Zhang W.-G, McDonald LA, Honores E, Hanna C, Yamashita A, Johnson B, Li Z, Laakso L, Powell D, Mansour TS. J. Med. Chem. 2009; 52: 2181
    • 4c Toral-Barza L, Zhang W.-G, Huang X, McDonald LA, Salaski EJ, Barbieri LR, Ding W.-D, Krishnamurthy G, Hu YB, Lucas J, Bernan VS, Cai P, Levin JI, Mansour TS, Gibbons JJ, Abraham RT, Yu K. Mol. Cancer Ther. 2007; 6: 3028
    • 5a Shivatare SS, Wong C.-H. J. Org. Chem. 2020; 85: 15780
    • 5b Kamala SP, Kamath SM, Thilagaraj WR, Rajaram R. Encyclopedia of Marine Biotechnology . Kim S.-K. Wiley-Blackwell; Hoboken: 2020. Chap. 93, DOI: DOI: 10.1002/9781119143802.ch93
    • 5c Bokor É, Kun S, Goyard D, Tóth M, Praly J.-P, Vidal S, Somsák L. Chem. Rev. 2017; 117: 1687
    • 5d Shen B. Cell 2015; 163: 1297
    • 5e Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. Chem. Soc. Rev. 2015; 44: 7591
    • 5f Cañeque T, Gomes F, Mai TT, Maestri G, Malacria M, Rodriguez R. Nat. Chem. 2015; 7: 744
    • 6a Meng S, Li X, Zhu J. Tetrahedron 2021; 88: 132140
    • 6b Lv W, Chen Y, Wen S, Ba D, Cheng G. J. Am. Chem. Soc. 2020; 142: 14864
    • 6c Liaw MW, Cheng WF, Tong R. J. Org. Chem. 2020; 85: 6663
    • 6d Lai M, Othman KA, Yao H, Wang Q, Feng Y, Huang N, Liu M, Zou K. Org. Lett. 2020; 22: 1144
    • 6e Otte F, Schmidt B. J. Org. Chem. 2019; 84: 14816
    • 6f Tang S, Zheng Q, Xiong D.-C, Jiang S, Li Q, Ye X.-S. Org. Lett. 2018; 20: 3079
    • 6g Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem. Rev. 2018; 118: 1495
    • 6h Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 6i Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J. Am. Chem. Soc. 2017; 139: 17908
    • 6j Xiong D.-C, Gao C, Li W, Wang Y, Li Q, Ye X.-S. Org. Chem. Front. 2014; 1: 798
  • 7 Matsumoto T, Katsuki M, Jona H, Suzuki K. Tetrahedron Lett. 1989; 30: 6185
  • 8 Toshima K. Carbohydr. Res. 2006; 341: 1282
  • 9 Liu M, Li B.-H, Li T, Wu X, Liu M, Xiong D.-C, Ye X.-S. Org. Biomol. Chem. 2020; 18: 3043
  • 10 Zhang W, Luo X, Wang Z, Zhang J. J. Carbohydr. Chem. 2016; 35: 315
    • 11a Dong Y, Yuma M, Mei Y, Jiang N, Yang G, Wang Z, Zhang J. Synlett 2020; 31: 1087
    • 11b Jiang N, Dong Y, Sun G, Yang G, Wang Q, Zhang J. ChemistrySelect 2020; 5: 1592
    • 11c Chen H, Luo X, Qiu S, Sun W, Zhang J. Glycoconjugate J. 2017; 34: 13
    • 11d Liu N, Tian X, Ding Z, Zhou Y, Zhang W, Wang Q, Zhang Y, Gu Y, Zhang J. J. Carbohydr. Chem. 2017; 36: 220
    • 11e Zhang J, Zhang B, Zhou J, Chen H, Li J, Yang G, Wang Z, Tang J. J. Carbohydr. Chem. 2013; 32: 380
    • 11f Zhou JF, Chen X, Wang QB, Zhang B, Zhang LY, Yusulf A, Wang ZF, Zhang JB, Tang J. Chin. Chem. Lett. 2010; 21: 922
    • 12a Gervay-Hague J. Acc. Chem. Res. 2016; 49: 35−47
    • 12b De Castro M, Marzabadi CH. Tetrahedron 2010; 66: 3395
    • 12c Schombs M, Park FE, Du W, Kulkarni SS, Gervay-Hague J. J. Org. Chem. 2010; 75: 4891
    • 12d Chervin SM, Abada P, Koreeda M. Org. Lett. 2000; 2: 369
    • 12e Ko Y.-J, Shim S.-B, Shin J.-H. Org. Lett. 2009; 11: 609
    • 12f Adinolfi M, Iadonisi A, Pezzella A, Ravidà A. Synlett 2005; 1848
    • 12g Gervay J, Nguyen TN, Hadd MJ. Carbohydr. Res. 1997; 300: 119
    • 13a Giordano M, Iadonisi A, Pastore A. Eur. J. Org. Chem. 2013; 2013: 3137
    • 13b Pastore A, Adinolfi M, Iadonisi A. Eur. J. Org. Chem. 2008; 6206
    • 13c Valerio S, Iadonisi A, Adinolfi M, Ravidà A. J. Org. Chem. 2007; 72: 6097
    • 13d Adinolfi M, Iadonisi A, Ravidà A, Schiattarella M. Tetrahedron Lett. 2003; 44: 7863
    • 13e Adinolfi M, Barone G, Iadonisi A, Schiattarella M. Synlett. 2002; 269
    • 14a Yang G, Luo X, Guo H, Wang Q, Zhou J, Huang T, Tang J, Shan J, Zhang J. J. Carbohydr. Chem. 2018; 37: 128
    • 14b Yang G, Wang Q, Luo X, Zhang J, Tang J. Glycoconjugate J. 2012; 29: 453
    • 14c Lam SN, Gervay-Hague J. Org. Lett. 2003; 5: 4219
    • 15a Osman H, Maidin SM. M, Larsen DS. ACGC Chem. Res. Commun. 2008; 22: 54
    • 15b Osman H, Larsen DS, Simpson J. Tetrahedron 2009; 65:  4092
    • 15c Toshima K, Matsuo G, Tatsuta K. Tetrahedron Lett. 1992; 33:  2175
    • 15d Krohn K, Agocs A, Bäuerlein C. J. Carbohydr. Chem. 2003; 22:  579
  • 16 dos Santos RG, Jesus AR, Caio JM, Rauter AP. Curr. Org. Chem. 2011; 15:  128
    • 17a Acharya PP, Khatri HR, Janda S, Zhu J. Org. Biomol. Chem. 2019; 17: 2691
    • 17b Kusumi S, Nakayama H, Kobayashi T, Kuriki H, Matsumoto Y, Takahashi D, Toshima K. Chem. Eur. J. 2016; 22: 18733
  • 18 Valderrama JA, Colonelli P, Vásquez D, González MF, Rodríguez JA, Theoduloz C. Bioorg. Med. Chem. 2008; 16: 10172
    • 19a Vu NQ, Dujardin G, Collet SC, Raiber E.-A, Guingant AY, Evain M. Tetrahedron Lett. 2005; 46: 7669
    • 19b Collet SC, Rémi J.-F, Cariou C, Laïb S, Guingant AY, Vu NQ, Dujardin G. Tetrahedron Lett. 2004; 45: 4911
  • 20 Jiang N, Mei Y, Yang Y, Dong Y, Ding Z, Zhang J. ChemCatChem 2021; 13: 3973
    • 21a Jung ME, Hagenah JA. J. Org. Chem. 1983; 48: 5359
    • 21b Heinzman SW, Grunwell JR. Tetrahedron Lett. 1980; 21: 4305
  • 22 Ramesh C, Mahender G, Ravindranath N, Das B. Tetrahedron 2003; 59: 1049
  • 23 The regioselectivity of the [4+2] cycloaddition reactions was determined by recourse to HMBC experiments (observation of long-range JC–H couplings).
    • 24a Han L, Sheng W, Li X, Sik A, Lin H, Liu K, Wang L. Med. Chem. Commun. 2019; 10: 598
    • 24b Shi W, Marcus SL, Lowary TL. Bioorg. Med. Chem. 2011; 19: 603
    • 24c Shi W, Coleman RS, Lowary TL. Org. Biomol. Chem. 2009; 7: 3709
    • 24d Horton D, Khare A. Carbohydr. Res. 2006; 341: 2631
    • 24e Pérez M, Lombó F, Baig I, Braña AF, Rohr J, Salas JA, Méndez C. Appl. Environ. Microbiol. 2006; 72: 6644
    • 24f Menendez N, Nur-e-Alam M, Fischer C, Braña AF, Salas JA, Rohr J, Méndez C. Appl. Environ. Microbiol. 2006; 72: 167
    • 24g Zhang G, Fang L, Zhu L, Aimiuwu JE, Shen J, Cheng H, Muller MT, Lee GE, Sun D, Wang PG. J. Med. Chem. 2005; 48: 5269
    • 25a Qiu S, Sun G, Ding Z, Chen H, Zhang J. Synlett 2017; 28: 2024
    • 25b Qiu S, Zhang W, Sun G, Wang Z, Zhang J. ChemistrySelect 2016; 1: 4840
  • 26 Product 3a; Typical Procedure I2 (50.8 mg, 0.2 mmol) was added to a stirred solution of 1a (54.8 mg, 0.2 mmol) and 2-naphthol (2a; 43.2 mg, 0.3 mmol) in anhyd DCE (4 mL) at rt. After 5 min, Et3SiH (9.6 μL, 0.06 mmol) was added. When the reaction was complete (TLC), it was quenched with sat. aq Na2S2O3 (5 mL), and the mixture was extracted with CH2Cl2 (20 mL). The combined organic layers were washed with brine (5 mL), dried (Na2SO4), filtered, and concentrated under vacuum. The crude product was purified by column chromatography (silica gel, PE–EtOAc) to give a yellow syrup; yield: 70.9 mg (99%). [α]25D = +67.0° (c 2.12, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 8.61 (s, 1 H), 7.76 (d, J = 8.0 Hz, 1 H), 7.70 (d, J = 8.9 Hz, 1 H), 7.66 (d, J = 8.6 Hz, 1 H), 7.48 (t, J = 7.5 Hz, 1 H), 7.32 (t, J = 7.4 Hz, 1 H), 7.11 (d, J = 8.9 Hz, 1 H), 5.55 (dd, J = 11.9, 1.7 Hz, 1 H), 5.27 (ddd, J = 11.4, 9.6, 5.2 Hz, 1 H), 5.00 (t, J = 9.6 Hz, 1 H), 3.81 (dq, J = 12.3, 6.1 Hz, 1 H), 2.49 (ddd, J = 13.6, 5.1, 1.9 Hz, 1 H), 2.15–2.08 (m, 1 H), 2.12 (s, 3 H), 2.01 (s, 3 H), 1.39 (d, J = 6.2 Hz, 3 H). ESI-MS: m/z [M + Na]+ calcd for C20H22NaO6: 381.13; found: 381.17.