Synthesis 2022; 54(06): 1633-1642
DOI: 10.1055/a-1669-0944
paper

NiNP@rGO Nanocomposites as Heterogeneous Catalysts for Thiocarboxylation Cross-Coupling Reactions

Lorenzo Lombardi
a   Dipartimento di Chimica ‘Giacomo Ciamician’, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy
,
Raffaello Mazzaro
b   CNR-IMM, Via Piero Gobetti 101, 40129 Bologna, Italy
c   Dipartimento di Fisica e Astronomia ‘A. Righi’, Alma Mater Studiorum, Università di Bologna, Via Berti Pichat 6/2, Bologna, Italy
,
Massimo Gazzano
d   Istituto per la Sintesi Organica e Fotoreattività (ISOF) – CNR, Via Gobetti 101, 40129 Bologna, Italy
,
Alessandro Kovtun
d   Istituto per la Sintesi Organica e Fotoreattività (ISOF) – CNR, Via Gobetti 101, 40129 Bologna, Italy
,
Vittorio Morandi
b   CNR-IMM, Via Piero Gobetti 101, 40129 Bologna, Italy
c   Dipartimento di Fisica e Astronomia ‘A. Righi’, Alma Mater Studiorum, Università di Bologna, Via Berti Pichat 6/2, Bologna, Italy
,
Giulio Bertuzzi
a   Dipartimento di Chimica ‘Giacomo Ciamician’, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy
,
Marco Bandini
a   Dipartimento di Chimica ‘Giacomo Ciamician’, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy
› Author Affiliations
We are grateful to the Università di Bologna for financial support and PRIN 2017 project 2017W8KNZW. European Union’s Graphene Flagship under Grant Agreements No. 785219 (GrapheneCore2) and 881603 (GrapheneCore3). The Department of Chemistry ‘Giacomo Ciamician’ acknowledges the Fondazione CarisBo for the funding of the project#18668 ‘Tecnologie avanzate per il controllo e lo sviluppo di molecole innovative per la salute’.


Abstract

A new type of ligand-free Ni-nanoparticles supported on rGO (size distribution average d = 9 ± 3 nm) was prepared and fully characterized via morphological (Fe-SEM), structural (P-XRD, HR-TEM), and spectroscopic (ICP-EOS, XPS) analysis tools. The metal composite was effectively employed in the unprecedented heterogeneously Ni-assisted cross-coupling reaction of aryl/vinyl iodides and thiocarboxylates. A range of sulfur-containing aryl as well as vinyl derivatives (15 examples) was achieved in high yields (up to 82%), under mild reaction conditions, and with wide functional group tolerance.

Supporting Information



Publication History

Received: 09 September 2021

Accepted after revision: 14 October 2021

Accepted Manuscript online:
14 October 2021

Article published online:
06 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 For general reviews see: Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 2a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 2b Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025
    • 2c Yaqiong L, Yuhang F, Qianfa J. Chin. J. Org. Chem. 2019; 39: 350
    • 2d Nebra N. Molecules 2020; 25: 1141
    • 2e Zhu C, Yue H, Jia J, Rueping M. Angew. Chem. Int. Ed. 2021; 60: 17810
    • 3a Liu L, Corma A. Chem. Rev. 2018; 118: 4981
    • 3b Ndoloming MJ, Bingwa N, Meijboom R. J. Mater. Sci. 2020; 55: 6195
    • 3c Jaji N.-D, Lee HL, Hussin MH, Akil HM, Zakaria M, Hafi Othman MB. Nanotech. Rev. 2020; 9: 1456

      For a collection of representative examples see:
    • 4a Bhowmik K, Sengupta D, Basu B, De G. RSC Adv. 2014; 4: 35442
    • 4b Hussain N, Gogoi P, Khare P, Das MR. RSC Adv. 2015; 5: 103105
    • 4c Keyhaniyan M, Shiri A, Eshighi H, Khojastehnezhad A. New J. Chem. 2018; 42: 19433
    • 4d Bathla A, Patil B. ChemistrySelect 2018; 3: 4738
    • 4e Dong Y, Jv J.-J, Li Y, Li W.-H, Chen Y.-Q, Sun Q, Ma J.-P, Dong Y.-B. RSC Adv. 2019; 9: 20266
    • 4f Adam AA, Szabados M, Polyakovics A, Konya Z, Kukovecz A, Sipos P, Palinko I. J. Nanosci. Nanotechnol. 2019; 19: 453
    • 4g Li Y, Hu Y, Shi F, Li H, Xie W, Chen J. Angew. Chem. Int. Ed. 2019; 58: 9049
    • 4h Naeimi H, Kiani F. J. Organomet. Chem. 2019; 885: 65
    • 4i Nan L, Yalan C, Jixiang L, Dujuan O, Wenhui D, Rouhi J, Mustapha M. RSC Adv. 2020; 10: 27923
    • 4j Ádám AA, Szabados M, Varga G, Papp A, Musza K, Kónya Z, Kukovecz A, Sipos P, Pálinkó I. Nanomaterials 2020; 10: 632
    • 4k Raoufi F, Manojjemi M, Aghaei H, Zare K, Ghaedi M. ChemistrySelect 2020; 5: 211
    • 4l Murugan K, Nainamalai D, Kanagaraj P, Nagappan SG, Palaniswamy S. Appl. Organomet. Chem. 2020; 34: e5778
    • 4m Keyhaniyan M, Khojastehnezhad A, Eshighi H, Shiri A. Appl. Organomet. Chem. 2021; 35: e6158
    • 4n Bhakta S, Ghosh T. ChemCatChem 2021; 13: 828 ; and references therein
  • 5 Łastawiecka E, Flis A, Stankevič M, Greluk M, Słowikb G, Gac W. Org. Chem. Front. 2018; 5: 2079
    • 6a Platon M, Wijaya N, Rampazzi V, Cui L, Rousselin Y, Saeys M, Hierse J.-C. Chem. Eur. J. 2014; 20: 12584
    • 6b Sengupta D, Bhowmik K, De G, Basu B. Beilstein J. Org. Chem. 2017; 13: 1796
  • 7 Wang N, Saidhreddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 8a Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706 ; and references therein
    • 8b Taherinia Z, Ghorbani-Choghamarani A. Can. J. Chem. 2019; 97: 46
    • 8c Panigrahi R, Sahu SK, Behera PK, Panda S, Rout L. Chem. Eur. J. 2020; 26: 620
    • 8d Panda S, Sahu SK, Behera PK, Panigrahi R, Garnaik B, Rout L. New J. Chem. 2020; 44: 2500
    • 8e Annamalai P, Liu K.-C, Badsara SS, Lee C.-F. Chem. Rec. 2021; in press DOI: 10.1002/tcr.202100133.

    • For electrochemical tools in oxidative C–S cross-coupling reaction see:
    • 8f Song C, Liu K, Dong X, Chiang C.-W. Synlett 2019; 30: 1149
    • 9a Favaretto L, An J, Sambo M, De Nisi A, Bettini C, Melucci M, Kovtun A, Liscio A, Palermo V, Bottoni A, Zerbetto F, Calvaresi M, Bandini M. Org. Lett. 2018; 20: 3705
    • 9b Lombardi L, Bellini D, Bottoni A, Calvaresi M, Monari M, Kovtun A, Palermo V, Melucci M, Bandini M. Chem. Eur. J. 2020; 26: 10427
    • 10a Ji Z, Shen X, Zhu G, Zhou H, Yuan Z. J. Mater. Chem. 2012; 22: 3471
    • 10b Nabid MR, Bide Y, Dastar F. Catal. Lett. 2015; 145: 1798
    • 10c Liu Y, Gao C, Li Q, Pang H. Chem. Eur. J. 2019; 25: 2141
    • 10d Al-Nafiey A, Al-Mamoori MH. K, Alshrefi SM, Shakir AK, Ahmed RT. Mater. Today: Proc. 2019; 19: 94
    • 10e Zhang X, Chen K.-H, Zhou Z.-H, He L.-H. ChemCatChem 2020; 12: 4825
  • 11 Parodi A, Battaglioli S, Liu Y, Monari M, Marín-Luna M, Silva López C, Bandini M. Chem. Commun. 2019; 55: 9669
    • 12a Peng K, Gao M.-Y, Yi Y.-Y, Guo J, Dong Z.-B. Eur. J. Org. Chem. 2020; 2020: 1665
    • 12b Sundaravelu N, Sangeetha S, Sekar G. Org. Biomol. Chem. 2021; 19: 1459

      For examples of homogeneous metal-catalyzed thiocarboxylation reaction see:
    • 13a Lai C, Backes BJ. Tetrahedron Lett. 2007; 48: 3033
    • 13b van den Hoogenband A, Lange JH. M, Broger RP. J, Stoit AR, Terpstra JW. Tetrahedron Lett. 2010; 51: 6877
    • 13c Park N, Park K, Jang M, Lee S. J. Org. Chem. 2011; 76: 4371
    • 13d Sonica-Castro SM, Peñéñory AB. Beilstein J. Org. Chem. 2013; 9: 467
    • 13e Soria-Castro SM, Andrada DA, Caminos DA, Argüello JE, Robert M, Peñéñory AB. J. Org. Chem. 2017; 82: 11464
    • 13f Olivito F, Costanzo P, Di Gioia ML, Nardi M, Oliverio M, Procopio A. Org. Biomol. Chem. 2018; 16: 7753
  • 14 Mazzaro R, Boni A, Valenti G, Marcaccio M, Paolucci F, Ortolani L, Morandi V, Ceroni P, Bergamini G. ChemistryOpen 2015; 4: 268
  • 15 Kim KS, Winograd N. Surf. Sci. 1974; 43: 625
  • 16 Zhang Z, Matsubayashi Z, Grisafe A, Lee B, Lloyd JR. Mater. Chem. Phys. 2016; 170: 175
  • 17 Kovtun A, Jones D, dell’Elce S, Treossi E, Liscio A, Palermo V. Carbon 2019; 143: 268
  • 18 See the Supporting Information for a complete list of reaction condition screening.
  • 19 Nasrallah HO, Min Y, Lerayer E, Nguyen T.-A, Poinsot D, Roger J, Brandés S, Heintz O, Roblin P, Jolibois F, Poteau R, Coppel Y, Kahn ML, Gerber IC, Axet MR, Serp P, Hierso J.-C. JACS Au 2021; 1: 187
  • 20 Sweeney JB, Ball AK, Smith LJ. Chem. Eur. J. 2018; 24: 7354
  • 21 Optimal reaction conditions involving NiNP-Type 2 required ca. 25 mol% of Ni loading with respect to 1.
  • 22 The present catalytic protocol displayed marked counterion dependance. In fact, sodium and cesium thioacetates proved inefficiency in the coupling protocol.
  • 23 Sun R, Qin Y, Nocera DG. Angew. Chem. Int. Ed. 2020; 59: 9527
    • 24a Uchiyama M, Furuyama T, Kobayashi M, Matsumoto Y, Tanaka K. J. Am. Chem. Soc. 2006; 128: 8404
    • 24b Bull SR, Palmer LC, Fry NJ, Greenfield MA, Messmore BW, Meade TJ, Stupp SI. J. Am. Chem. Soc. 2008; 130: 2742
    • 24c Lee K, Ban HS, Naik R, Hong YS, Son S, Kim B.-K, Xia Y, Song KB, Lee H.-S, Won M. Angew. Chem. Int. Ed. 2013; 52: 10286
    • 24d Melissaris AP, Litt MH. J. Org. Chem. 1994; 59: 5818
    • 24e Soltani Y, Wilkins LC, Melen RL. Angew. Chem. Int. Ed. 2017; 56: 11995
    • 24f Xu R.-S, Yue L, Pan Y.-J. Tetrahedron 2012; 68: 5046
    • 25a Liu H, Zhao L, Yuan Y, Xu Z, Chen K, Qiu S, Tan H. ACS Catal. 2016; 6: 1732
    • 25b Jixian P, Hui W, Zhongdong S. CN 107840815 A, 2018 . Add 370 mL of methanol to a 1000 mL four-necked flask. Add 370 mL of ethanol and 51.4 g of thiobenzoic acid. Add 19.0 g of potassium hydroxide. The reaction was vigorously stirred at 50 °C for 2.5 hours. Concentrate the reaction to a yellow solid. Wash with 200 mL of diethyl ether. 59.4 g of potassium thiobenzoate was filtered; yield: 99%.