Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(12): 1184-1188
DOI: 10.1055/a-1652-2707
DOI: 10.1055/a-1652-2707
cluster
Organic Photoredox Catalysis in Synthesis – Honoring Prof. Shunichi Fukuzumi’s 70th Birthday
Assemblies of 1,4-Bis(diarylamino)naphthalenes and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water
This work was supported by the JSPS (KAKENHI Grants 19H02711 and 21H01928) and JST CREST (Grant Number JPMJCR18R4). This work was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices.
Abstract
Host–guest assemblies of a designed 1,4-bis(diarylamino)naphthalene and V-shaped aromatic amphiphiles consisting of two pentamethylbenzene moieties bridged by an m-phenylene unit bearing two hydrophilic side chains emerged as highly reducing photoredox catalysis systems in water. An efficient demethoxylative hydrogen transfer of Weinreb amides has been developed. The present supramolecular strategy permits facile tuning of visible-light photoredox catalysis in water.
Key words
photoredox catalysis - supramolecular catalysts - organophotocatalysis - radical reaction - Weinreb amides - demethoxylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1652-2707.
- Supporting Information
Publication History
Received: 31 July 2021
Accepted after revision: 23 September 2021
Accepted Manuscript online:
23 September 2021
Article published online:
13 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018
- 1b Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 1c Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
- 1d Kancherla RM. K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
- 1e McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
- 2 Sun K, Lv Q.-Y, Chen X.-L, Qu L.-B, Yu B. Green Chem. 2021; 23: 232
- 3a Kerzig C, Goez M. Chem. Sci. 2016; 7: 3862
- 3b Bu M.-j, Cai C, Gallou F, Lipshutz BH. Green Chem. 2018; 20: 1233
- 3c Bu M.-j, Lu G.-p, Jiang J, Cai C. Catal. Sci. Technol. 2018; 8: 3728
- 3d Giedyk M, Narobe R, Weiß S, Touraud D, Kunz W, König B. Nat. Catal. 2019; 3: 40
- 3e Kerzig C, Wenger OS. Chem. Sci. 2019; 10: 11023
- 3f Eisenreich F, Meijer EW, Palmans AR. A. Chem. Eur. J. 2020; 26: 10355
- 3g Santos MS, Cybularczyk-Cecotka M, König B, Giedyk M. Chem. Eur. J. 2020; 26: 15323
- 3h Liu J, Yao H, Li X, Wu H, Lin A, Yao H, Xu J, Xu S. Org. Chem. Front. 2020; 7: 1314
- 4 Pearson RM, Lim CH, McCarthy BG, Musgrave CB, Miyake GM. J. Am. Chem. Soc. 2016; 138: 11399
- 5a Kondo K, Suzuki A, Akita M, Yoshizawa M. Angew. Chem. Int. Ed. 2013; 52: 2308
- 5b Okazawa Y, Kondo K, Akita M, Yoshizawa M. Chem. Sci. 2015; 6: 5059
- 5c Okazawa Y, Kondo K, Akita M, Yoshizawa M. J. Am. Chem. Soc. 2015; 137: 98
- 5d Kondo K, Akita M, Yoshizawa M. Chem. Eur. J. 2016; 22: 1937
- 6 Noto N, Hyodo Y, Yoshizawa M, Koike T, Akita M. ACS Catal. 2020; 10: 14283
- 7a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 7b Silvi M, Melchiorre P. Nature 2018; 554: 41
- 7c Lee Y, Kwon MS. Eur. J. Org. Chem. 2020; 6028
- 7d Koike T, Akita M. Trends Chem. 2021; 3: 416
- 7e Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
- 8a Noto N, Koike T, Akita M. ACS Catal. 2019; 9: 4382
- 8b Noto N, Takahashi K, Goryo S, Takakado A, Iwata K, Koike T, Akita M. J. Org. Chem. 2020; 85: 13220
- 8c Taniguchi R, Noto N, Tanaka S, Takahashi K, Sarkar SK, Oyama R, Abe M, Koike T, Akita M. Chem. Commun. 2021; 57: 2609
- 9 CCDC 2097141 contains the supplementary crystallographic data for compound 1c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 10 Photocatalytic Demethoxylation of Weinreb Amides: General Procedure A 4 mL sample bottle was charged with amide 4 (0.13 mmol), Et3N (0.26 mmol), and 1.3 mM aq 3c (2 mL, 2 mol%), and then placed 1 cm away from blue LED lamps (λ = 425 nm). The mixture was irradiated, with stirring and cooling by a fan for 3–48 h. H2O (5 mL) was then added and the resulting mixture was extracted with CH2Cl2 (3 × 15 mL). The organic layer was dried (Na2SO4) and concentrated, and the crude product was purified by gel-permeation chromatography. N,4-Dimethylbenzamide (5a) White solid; yield: 16.3 mg (88%, 0.109 mmol). 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 8.0 Hz, 2 H, Ar), 7.22 (d, J = 8.0 Hz, 2 H, Ar), 6.10 (br s, 1 H, NH), 3.00 (d, J = 4.7 Hz, 3 H, CH 3), 2.39 (s, 3 H, CH 3). N-Methylbiphenyl-4-carboxamide (5c) White solid; yield: 20.0 mg (69%, 0.0904 mmol). 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 8.3 Hz, 2 H, Ar), 7.65–7.59 (m, 4 H, Ar), 7.46 (dd, J = 7.1, 7.7 Hz, 2 H, Ar), 7.38 (t, J = 7.4 Hz, 1 H, Ar), 6.28 (br s, 1 H, NH), 3.04 (d, J = 4.8 Hz, 3 H, CH 3).
- 11 Cutulic S, Murphy J, Farwaha H, Zhou S.-Z, Chrystal E. Synlett 2008; 2132
- 12 Quenching experiments for 3c with quenchers 4a and Et3N in water showed a significant increase in fluorescence intensity. In addition, 4a affected the lifetime of the fluorescent excited species. These results also suggest that unique assemblies are formed in the present system (see the Supporting Information).
For selected recent references on photoredox catalysis, see:
For selected examples of photoredox catalysis in water, see: