Synlett 2021; 32(19): 1934-1938
DOI: 10.1055/a-1650-8519
letter

Electrochemical Synthesis of 2-Bromoethyl and 2-Iodoethyl Ketones from Cyclopropanols

Maryia V. Barysevich
a   Laboratory of Steroids, Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kupreviča 5/2, Minsk 220141, Belarus
,
Yauhen M. Aniskevich
b   Belarusian State University, Niezaliežnasci av. 4, Minsk, 220030, Belarus
,
Alaksiej L. Hurski
a   Laboratory of Steroids, Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kupreviča 5/2, Minsk 220141, Belarus
› Author Affiliations
This work was funded by the Belarusian Foundation for Fundamental Research (projects Х20М-036 and X19PM-074).


Abstract

A simple electrochemical protocol for the preparation of 2-bromoethyl- and 2-iodoethyl ketones from cyclopropanols and magnesium halides has been developed. The reaction proceeded with exclusive regioselectivity and without epimerization of the α-stereocenter in the products. We also showed that the synthesized diastereomerically pure 2-bromoethyl ketones undergo smooth copper and nickel-catalyzed alkylation, alkenylation, and arylations reactions.

Supporting Information



Publication History

Received: 27 July 2021

Accepted after revision: 21 September 2021

Accepted Manuscript online:
21 September 2021

Article published online:
08 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For a review of cyclopropane chemistry, see:
    • 1a Kulinkovich OG. Chem. Rev. 2003; 103: 2597
    • 1b Nikolaev A, Orellana A. Synthesis 2016; 48: 1741
    • 1c Mills LR, Rousseaux SA. L. Eur. J. Org. Chem. 2019; 8
    • 1d McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3

      For the electrophilic bromination of cyclopropanols, see:
    • 2a DePuy CH, Arney WC, Gibson D. J. Am. Chem. Soc. 1968; 90: 1830
    • 2b Le Goaller R, Pierre J.-L. Can. J. Chem. 1978; 56: 481
    • 2c Sakai T, Katayama T, Takeda A. J. Org. Chem. 1981; 46: 2924
    • 2d Jiao J, Nguyen LX, Patterson DR, Flowers RA. Org. Lett. 2007; 9: 1323
    • 2e Abad A, Agulló C, Cuñat AC, de Alfonso Marzal I, Gris A, Navarro I, Ramírez de Arellano C. Tetrahedron 2007; 63: 1664
    • 2f Rao NN, Cha JK. Tetrahedron Lett. 2015; 56: 3298

      For syntheses of α-methylene ketones from cyclopropanols by bromination/dehydrobromination, see:
    • 3a Sviridov SV, Vasilevskii DA, Kulinkovich OG. Zh. Org. Khim. 1991; 27: 1431 ; J. Org. Chem. USSR (Engl. Transl.) 1991, 27, 1251
    • 3b Savchenko AI, Sviridov SV, Kulinkovich OG. Zh. Org. Khim. 1994; 30: 333; Russ. J. Org. Chem (Engl. Transl.) 1994, 30, 353
    • 3c Achmatowicz B, Jankowski P, Wicha J. Tetrahedron Lett. 1996; 37: 5589
    • 3d Kulinkovich OG, Masalov N, Tyvorskii V, De Kimpe N. Tetrahedron Lett. 1996; 37: 1095
    • 3e Kulinkovich OG, Bagutskii VV. Zh. Org. Khim. 1997; 33: 898 ; Russ. J. Org. Chem (Engl. Transl.) 1997, 33, 830
    • 3f Chevtchouk TA, Isakov VE, Kulinkovich OG. Tetrahedron 1999; 55: 13205
    • 3g Chevtchouk TA, Kulinkovich OG. Zh. Org. Khim. 2000; 36: 1160; Russ. J. Org. Chem (Engl. Transl.) 2000, 36, 1124
    • 5a Tang H.-T, Jia J.-S, Pan Y.-M. Org. Biomol. Chem. 2020; 18: 5315
    • 5b Zhong P.-F, Lin H.-M, Wang L.-W, Mo Z.-Y, Meng X.-J, Tang H.-T, Pan Y.-M. Green Chem. 2020; 22: 6334
    • 5c Wu J, Abou-Hamdan H, Guillot R, Kouklovsky C, Vincent G. Chem. Commun. 2020; 56: 1713
  • 6 For a radical electrochemical ring-opening halogenation leading to linear halides, see: Allen BD. W, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Org. Lett. 2019; 21: 9241
  • 7 2-Haloethyl Ketones: General Procedure A 50 mL vial equipped with a stirring bar was charged with a 0.03–0.05 M solution of the appropriate cyclopropanol (1 equiv) in 2:1 MeCN–H2O followed by MgBr2 (1 equiv) or MgI2·Et2O (1 equiv). The vial was then closed with an electrode holder containing a graphite anode and cathode. Electrolysis of the reaction mixture was carried out at rt and a constant current of 3.6 mA/cm2. When the reaction was complete (40–80 min), it was quenched with 5% aq Na2SO3 (2 mL) and the mixture was diluted with H2O and extracted with DCM (3 × 5 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated under vacuum. The crude product was then purified by flash column chromatography. 3-(Bromomethyl)-1-{[tert-butyl(diphenyl)silyl]oxy}-9-hydroxynonan-4-one (10k) Colorless oil; yield: 39.4 mg (76%). 1H NMR (500 MHz, CDCl3): δ = 7.67–7.60 (m, 4 H), 7.47–7.36 (m, 6 H), 3.69–3.60 (m, 4 H), 3.58–3.52 (m, 1 H), 3.39 (dd, J = 9.9, 4.7 Hz, 1 H), 3.26–3.17 (m, 1 H), 2.54 (t, J = 7.2 Hz, 2 H), 1.93–1.83 (m, 1 H), 1.72–1.53 (m, 5 H), 1.39–1.30 (m, 2 H), 1.06 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 211.2, 135.7, 133.4, 130.0, 127.9, 62.8, 61.3, 50.5, 43.3, 34.0, 32.6, 32.2, 27.0, 25.3, 23.0, 19.3. HRMS (ESI+): m/z [M + Na]+ calcd for C26H37BrNaO3Si: 527.1588; found: 527.1582. (±)-4-(Bromomethyl)-6-{[tert-butyl(diphenyl)silyl]oxy}-1-phenyloctan-3-one [(±)-10p] Colorless oil; yield: 38 mg (82%). 1H NMR (500 MHz, CDCl3): δ = 7.70–7.61 (m, 4 H), 7.45–7.33 (m, 6 H), 7.30–7.24 (m, 2 H), 7.23–7.17 (m, 1 H), 7.13–7.07 (m, 2 H), 3.61 (tt, J = 6.7, 4.7 Hz, 1 H), 3.34 (dd, J = 10.0, 8.5 Hz, 1 H), 3.17 (dd, J = 10.0, 4.8 Hz, 1 H), 2.98 (tt, J = 8.2, 4.9 Hz, 1 H), 2.86–2.65 (m, 3 H), 2.52 (ddd, J = 17.9, 9.5, 5.7 Hz, 1 H), 1.89 (ddd, J = 14.1, 7.9, 4.7 Hz, 1 H), 1.52–1.41 (m, 3 H), 1.06 (s, 9 H), 0.75 (t, J = 7.4 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 209.9, 141.1, 136.0, 134.3, 134.0, 129.9, 129.9, 128.6, 128.5, 127.8, 127.7, 126.2, 73.0, 50.2, 45.0, 37.4, 32.9, 29.8, 29.2, 27.2, 19.5, 9.1. HRMS (ESI+): m/z [M + H]+ calcd for C31H40BrO2Si: 551.1975; found: 551.1976.
  • 8 Cahiez G, Chaboche C, Jézéquel M. Tetrahedron 2000; 56: 2733
  • 9 Johnson KA, Biswas S, Weix DJ. Chem. Eur. J. 2016; 22: 7399
  • 10 Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
  • 11 Allen GD, Buzzeo MC, Villagrán C, Hardacre C, Compton RG. J. Electroanal. Chem. 2005; 575: 311