Synthesis 2022; 54(03): 711-722
DOI: 10.1055/a-1647-6973
paper

Synthesizing Highly Fluorinated Oligophenyls via Negishi Coupling of Fluoroarylzinc Pivalates

Julian Stoesser
,
Elric Engelage
,
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research­ Foundation) under Germany’s Excellence Strategy (EXC 2033 - 390677874 - RESOLV).


Abstract

Previously established general synthetic methods for the synthesis of highly fluorinated biphenyls using Suzuki–Miyaura protocols require the use of organoboron compounds, which are not very stable under reactions conditions and thus need to be used in large excess. Herein, we report an improved general strategy for the synthesis of highly fluorinated biphenyls, terphenyls, and phenyl-substituted terphenyls using organozinc pivalates. The influence of several parameters was investigated: (1) in a series of monodentate phosphine ligands, X-Phos showed the best performance; (2) a higher yield was obtained for substrates bearing less steric hindrance or lower amount of fluorine substitution; (3) as iodinated substrates decomposed during the reaction, brominated electrophiles were found to be superior. The presented protocol is scalable, versatile, and works with commonly used and commercially available phosphine ligands (X-Phos) and palladium sources (Pd2dba3). Also, it does not require excess nucleophile for terphenyl synthesis and only a slight excess is needed for the preparation of phenyl substituted terphenyls.

Supporting Information



Publication History

Received: 26 August 2021

Accepted after revision: 17 September 2021

Accepted Manuscript online:
17 September 2021

Article published online:
02 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhang D.-S, Chang Z, Li Y.-F, Jiang Z.-Y, Xuan Z.-H, Zhang Y.-H, Li J.-R, Chen Q, Hu T.-L, Bu X.-H. Sci. Rep. 2013; 3312
    • 1b Stastny C, Ruschewitz U. Z. Anorg. Allg. Chem. 2018; 644: 1908
    • 1c Zhang Z, Miljanić O. Š. Org. Mater. 2019; 1: 19
    • 1d Cheplakova AM, Samsonenko DG, Fedin VP. Pure Appl. Chem. 2020; 92: 1081
    • 2a Kunde T, Pausch T, Reiss GJ, Schmidt BM. Synlett 2021; in press DOI: 10.1055/a-1470-6050.
    • 2b Liao Q, Ke C, Huang X, Zhang G, Zhang Q, Zhang Z, Zhang Y, Liu Y, Ning F, Xi K. J. Mater. Chem. A 2019; 7: 18959
    • 2c Alahakoon SB, McCandless GT, Karunathilake AA. K, Thompson CM, Smaldone RA. Chem. Eur. J. 2017; 23: 4255
    • 3a Jiang Y, An Z, Chen P, Chen X, Zheng M. Liq. Cryst. 2012; 39: 457
    • 3b Desiraju GR. Angew. Chem. Int. Ed. 2007; 46: 8342
    • 4a Kirsch P. J. Fluorine Chem. 2015; 177: 29
    • 4b Bremer M, Kirsch P, Klasen-Memmer M, Tarumi K. Angew. Chem. Int. Ed. 2013; 52: 8880
    • 4c Reiffenrath V, Krause J, Plach HJ, Weber G. Liq. Cryst. 1989; 5: 159
  • 5 Lozano-Hernández LA, Maldonado JL, Hernández-Cruz O, Nicasio-Collazo J, Rodríguez M, Barbosa-García O, Ramos-Ortíz G, Zolotukhin MG, Scherf U. Dyes Pigm. 2020; 173: 107989
  • 6 Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
  • 7 Stoesser J, Rojas G, Bulfield D, Hidalgo PI, Pasán J, Ruiz-Pérez C, Jiménez CA, Huber SM. New J. Chem. 2018; 42: 10476
  • 8 Jungbauer SH, Bulfield D, Kniep F, Lehmann CW, Herdtweck E, Huber SM. J. Am. Chem. Soc. 2014; 136: 16740
  • 9 Bulfield D, Engelage E, Mancheski L, Stoesser J, Huber SM. Chem. Eur. J. 2020; 26: 1567
  • 10 Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
  • 11 Bulfield D, Huber SM. J. Org. Chem. 2017; 82: 13188
  • 12 Kuivila HG, Reuwer JF, Mangravite JA. J. Am. Chem. Soc. 1964; 86: 2666
  • 13 According to IUPAC nomenclature, compounds like 19b (see Table 5) are classified as substituted terphenyls and are here named as such, in contrast to some of our earlier papers, in which these compounds have been erroneously named quarterphenyls. See: Favre HA, Powell WH. Nomenclature of Organic Chemistry, IUPAC Recommendations and Preferred Names 2013. Royal Society of Chemistry; Cambridge: 2014
  • 14 Stathakis CI, Bernhardt S, Quint V, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 9428
  • 15 Chen Y.-H, Ellwart M, Malakhov V, Knochel P. Synthesis 2017; 49: 3215
  • 16 Yang Y, Oldenhuis NJ, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 615
  • 17 Vinogradov AS, Platonov VE. Russ. J. Org. Chem. 2015; 51: 1388
    • 18a Mosrin M, Knochel P. Org. Lett. 2009; 11: 1837
    • 18b Mosrin M, Monzon G, Bresser T, Knochel P. Chem. Commun. 2009; 5615
  • 19 Hernán-Gómez A, Herd E, Hevia E, Kennedy AR, Knochel P, Koszinowski K, Manolikakes SM, Mulvey RE, Schnegelsberg C. Angew. Chem. Int. Ed. 2014; 53: 2706
  • 20 Stathakis CI, Manolikakes SM, Knochel P. Org. Lett. 2013; 15: 1302
  • 21 Ellwart M, Chen Y.-H, Tüllmann CP, Malakhov V, Knochel P. Org. Synth. 2019; 95: 127
  • 22 Suzuki J, Kobayashi Y, Murakami H, Ono R, Onoue S, Ota S, Nonaka H. JP2016084347, 2015
  • 23 Budiman YP, Friedrich A, Radius U, Marder TB. ChemCatChem 2019; 11: 5387