Synlett 2021; 32(19): 1879-1890
DOI: 10.1055/a-1616-5643
synpacts

Imide-Functionalized Helical PAHs: A Step towards New Chiral Functional Materials

Fridolin Saal
,
This project has received funding from the Julius-Maximilians-Universität Würzburg within the “Excellent Ideas” program.


Dedicated to Professor Klaus Müllen

Abstract

Attachment of cyclic imide groups to polycyclic aromatic hydrocarbons (PAHs) leads to fascinating electronic and luminescence properties, with rylene diimides being a representative example. The close to unity fluorescence quantum yields and electron-acceptor properties render them suitable for application in organic electronics and photovoltaics. Recent reports show that, in line with planar PAHs, the imide functionalization has also endowed helical three-dimensional PAHs with similar beneficial photophysical properties. In this article, we have summarized the state-of-the-art research developments in the field of helicene–imide hybrid functional molecules, with a particular focus on synthesis, (chir)optical and redox properties, and applications in electronics. Additionally, we have highlighted our recent work, introducing a novel family of functional chiral molecules, namely, [n]helicene diimides, as three-dimensional relatives of rylene diimides.



Publication History

Received: 26 July 2021

Accepted after revision: 27 August 2021

Publication Date:
27 August 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Biot JB. Mémoire sur la Polarisation Cirulaire et sur ses Application al la Chimie Organique. l'Académie Royale des Sciences; Paris: 1833
  • 2 Pasteur L. Ann. Chim. Phys. 1848; 24: 442
  • 3 Brooks WH, Guida WC, Daniel KG. Curr. Top. Med. Chem. 2011; 11: 760
  • 4 Reinitzer F. Monatsh. Chem. 1888; 9: 421
  • 5 Brandt JR, Salerno F, Fuchter MJ. Nat. Rev. Chem. 2017; 1: 0045
  • 6 Berova N, Nakanishi K, Woody RW. Circular Dichroism: Principles and Applications. John Wiley & Sons; Weinheim: 2000
  • 7 Zhao W.-L, Li M, Lu H.-Y, Chen C.-F. Chem. Commun. 2019; 55: 13793
  • 8 Chen N, Yan B. Molecules 2018; 23: 3376
  • 9 Mondal AK, Preuss MD, Ślęczkowski ML, Das TK, Vantomme G, Meijer EW, Naaman R. J. Am. Chem. Soc. 2021; 143: 7189
  • 10 Ravat P. Chem. Eur. J. 2021; 27: 3957
  • 11 Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 8846
  • 12 Gingras M. Chem. Soc. Rev. 2013; 42: 1051
  • 13 Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463
  • 14 Martin RH. Angew. Chem. Int. Ed. Engl. 1974; 13: 649
  • 15 Mori T. Chem. Rev. 2021; 121: 2373
  • 16 Ravat P, Šolomek T, Juríček M. ChemPhotoChem 2019; 3: 180
  • 17 Kim Y.-H, Zhai Y, Lu H, Pan X, Xiao C, Gaulding EA, Harvey SP, Berry JJ, Vardeny ZV, Luther JM, Beard MC. Science 2021; 371: 1129
  • 18 Zhang L, Song I, Ahn J, Han M, Linares M, Surin M, Zhang H.-J, Oh JH, Lin J. Nat. Commun. 2021; 12: 142
  • 19 Kim NY, Kyhm J, Han H, Kim SJ, Ahn J, Hwang DK, Jang HW, Ju B.-K, Lim JA. Adv. Funct. Mater. 2019; 29: 1808668
  • 20 Yang Y, Correa da Costa R, Fuchter MJ, Campbell AJ. Nat. Photonics 2013; 7: 634
  • 21 Gingras M, Felix G, Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
  • 22 Birks JB, Birch DJ. S, Cordemans E, Vander Donckt E. Chem. Phys. Lett. 1976; 43: 33
  • 23 Sapir M, Vander Donckt E. Chem. Phys. Lett. 1975; 36: 108
  • 24 Nakai Y, Mori T, Inoue Y. J. Phys. Chem. A 2012; 116: 7372
  • 25 Sakai H, Kubota T, Yuasa J, Araki Y, Sakanoue T, Takenobu T, Wada T, Kawai T, Hasobe T. J. Phys. Chem. C 2016; 120: 7860
  • 26 Saal F, Zhang F, Holzapfel M, Stolte M, Michail E, Moos M, Schmiedel A, Krause A.-M, Lambert C, Würthner F, Ravat P. J. Am. Chem. Soc. 2020; 142: 21298
  • 27 Kardos M. German Patent DE 276956, 1913
  • 28 Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
  • 29 Kobaisi MA, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Chem. Rev. 2016; 116: 11685
  • 30 Chen L, Li C, Müllen K. J. Mater. Chem. C 2014; 2: 1938
  • 31 Huang C, Barlow S, Marder SR. J. Org. Chem. 2011; 76: 2386
  • 32 Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew. Chem. Int. Ed. 2010; 49: 9068
  • 33 Gsänger M, Bialas D, Huang L, Stolte M, Würthner F. Adv. Mater. 2016; 28: 3615
  • 34 Kozma E, Mróz W, Villafiorita-Monteleone F, Galeotti F, Andicsová-Eckstein A, Catellani M, Botta C. RSC Adv. 2016; 6: 61175
  • 35 Li G, Zhao Y, Li J, Cao J, Zhu J, Sun XW, Zhang Q. J. Org. Chem. 2015; 80: 196
  • 36 Nowak-Król A, Shoyama K, Stolte M, Würthner F. Chem. Commun. 2018; 54: 13763
  • 37 Chen JP, Gao JP, Wang ZY. Polym. Int. 1997; 44: 83
  • 38 Wang ZY, Qi Y, Bender TP, Gao JP. Macromolecules 1997; 30: 764
  • 39 Bock H, Subervie D, Mathey P, Pradhan A, Sarkar P, Dechambenoit P, Hillard EA, Durola F. Org. Lett. 2014; 16: 1546
  • 40 Caeiro J, Pena D, Cobas A, Perez D, Guitián E. Adv. Synth. Catal. 2006; 348: 2466
  • 41 Pena D, Pérez D, Guitián E, Castedo L. J. Org. Chem. 2000; 65: 6944
  • 42 Wang R, Shi K, Cai K, Guo Y, Yang X, Wang J.-Y, Pei J, Zhao D. New J. Chem. 2016; 40: 113
  • 43 Hirao T, Ono Y, Kawata N, Haino T. Org. Lett. 2020; 22: 5294
  • 44 Bock H, Huet S, Dechambenoit P, Hillard EA, Durola F. Eur. J. Org. Chem. 2015; 1033
  • 45 Birks J, Birch D, Cordemans E, Vander Donckt E. Chem. Phys. Lett. 1976; 43: 33
  • 46 Kubo H, Hirose T, Nakashima T, Kawai T, Hasegawa J.-y, Matsuda K. J. Phys. Chem. Lett. 2021; 12: 686
  • 47 Xie Z, Würthner F. Org. Lett. 2010; 12: 3204
  • 48 Osswald P, Würthner F. J. Am. Chem. Soc. 2007; 129: 14319
  • 49 Hofkens J, Vosch T, Maus M, Köhn F, Cotlet M, Weil T, Herrmann A, Müllen K, De Schryver F. Chem. Phys. Lett. 2001; 333: 255
  • 50 Lütke Eversloh C, Liu Z, Müller B, Stangl M, Li C, Müllen K. Org. Lett. 2011; 13: 5528
  • 51 Weiss C, Sharapa DI, Hirsch A. Chem. Eur. J. 2020; 26: 14100
  • 52 Liu B, Böckmann M, Jiang W, Doltsinis NL, Wang Z. J. Am. Chem. Soc. 2020; 142: 7092
  • 53 Li Y, Xu W, Di Motta S, Negri F, Zhu D, Wang Z. Chem. Commun. 2012; 48: 8204
  • 54 Zeng C, Xiao C, Feng X, Zhang L, Jiang W, Wang Z. Angew. Chem. Int. Ed. 2018; 57: 10933
  • 55 Wu J, He D, Wang Y, Su F, Guo Z, Lin J, Zhang H.-J. Org. Lett. 2018; 20: 6117
  • 56 Yue W, Jiang W, Böckmann M, Doltsinis NL, Wang Z. Chem. Eur. J. 2014; 20: 5209
  • 57 Zhang L, Song I, Ahn J, Han M, Linares M, Surin M, Zhang H.-J, Oh JH, Lin J. Nat. Commun. 2021; 12: 142
  • 58 Schuster NJ, Joyce LA, Paley DW, Ng F, Steigerwald ML, Nuckolls C. J. Am. Chem. Soc. 2020; 142: 7066
  • 59 Milton M, Schuster NJ, Paley DW, Sánchez RH, Ng F, Steigerwald ML, Nuckolls C. Chem. Sci. 2019; 10: 1029
  • 60 Schuster NJ, Hernández Sánchez R. l, Bukharina D, Kotov NA, Berova N, Ng F, Steigerwald ML, Nuckolls C. J. Am. Chem. Soc. 2018; 140: 6235
  • 61 Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C. Angew. Chem. Int. Ed. 2016; 55: 13519
  • 62 Xiao X, Pedersen SK, Aranda D, Yang J, Wiscons RA, Pittelkow M, Steigerwald ML, Santoro F, Schuster NJ, Nuckolls C. J. Am. Chem. Soc. 2021; 143: 983
  • 63 Aranda D, Schuster NJ, Xiao X, Ávila Ferrer FJ, Santoro F, Nuckolls C. J. Phys. Chem. C 2021; 125: 2554
  • 64 Meng D, Fu H, Xiao C, Meng X, Winands T, Ma W, Wei W, Fan B, Huo L, Doltsinis NL, Wang Z. J. Am. Chem. Soc. 2016; 138: 10184
  • 65 Chen Z, Lohr A, Saha-Möller CR, Würthner F. Chem. Soc. Rev. 2009; 38: 564
  • 66 Hartnett PE, Timalsina A, Matte HR, Zhou N, Guo X, Zhao W, Facchetti A, Chang RP, Hersam MC, Wasielewski MR. J. Am. Chem. Soc. 2014; 136: 16345
  • 67 Fu H, Meng D, Meng X, Sun X, Huo L, Fan Y, Li Y, Ma W, Sun Y, Wang Z. J. Mater. Chem. A 2017; 5: 3475
  • 68 Liang N, Meng D, Ma Z, Kan B, Meng X, Zheng Z, Jiang W, Li Y, Wan X, Hou J. Adv. Energy Mater. 2017; 7: 1601664
  • 69 Liu X, Du X, Wang J, Duan C, Tang X, Heumueller T, Liu G, Li Y, Wang Z, Wang J. Adv. Energy Mater. 2018; 8: 1801699
  • 70 Ma Z, Winands T, Liang N, Meng D, Jiang W, Doltsinis NL, Wang Z. Sci. China Chem. 2020; 63: 208
  • 71 Chen S, Meng D, Huang J, Liang N, Li Y, Liu F, Yan H, Wang Z. CCS Chem. 2021; 78
  • 72 Liang N, Meng D, Wang Z. Acc. Chem. Res. 2021; 54: 961
  • 73 Liu G, Koch T, Li Y, Doltsinis NL, Wang Z. Angew. Chem. Int. Ed. 2019; 58: 178
  • 74 Ravat P, Hinkelmann R, Steinebrunner D, Prescimone A, Bodoky I, Juríček M. Org. Lett. 2017; 19: 3707
  • 75 Ravat P, Šolomek T, Rickhaus M, Häussinger D, Neuburger M, Baumgarten M, Juríček M. Angew. Chem. Int. Ed. 2016; 55: 1183
  • 76 Ravat P, Šolomek T, Ribar P, Juríček M. Synlett 2016; 27: 1613
  • 77 Ravat P, Šolomek T. s, Häussinger D, Blacque O, Juríček M. J. Am. Chem. Soc. 2018; 140: 10839
  • 78 Zhang G, Tan J, Zhou L, Liu C, Liu J, Zou Y, Narita A, Hu Y. Org. Lett. 2021; 23: 6183
  • 79 Zhang F, Radacki K, Braunschweig H, Lambert C, Ravat P. Angew. Chem. Int. Ed. 2021; accepted; DOI: DOI: 10.1002/anie.202109380.
  • 80 Zhang F, Michail E, Saal F, Krause A.-M, Ravat P. Chem. Eur. J. 2019; 25: 16241