Synthesis 2021; 53(23): 4449-4460
DOI: 10.1055/a-1548-8362
paper

Nickel-Catalyzed Hydrodeoxygenation of Aryl Sulfamates with Alcohols as Mild Reducing Agents

Kasumi Matsuo
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
,
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
,
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
,
Yosuke Demizu
b   Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
,
Koyo Nishida
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
,
Osamu Onomura
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
› Author Affiliations
This research was supported by JSPS KAKENHI (18K06582, 19K16317, and 19K05459) and Research Grant for Pharmaceutical Sciences from Takeda Science Foundation.


Abstract

The nickel-catalyzed hydrodeoxygenation of aryl sulfamates has been developed with alcohols as mild reductants. A variety of functional groups and heterocycles were tolerated in this reaction system to give the desired products in high yields. In addition, the gram-scale process and stepwise cine-substitution were also achieved with high efficiency.

Supporting Information



Publication History

Received: 14 June 2021

Accepted after revision: 13 July 2021

Accepted Manuscript online:
13 July 2021

Article published online:
17 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Reviews:
    • 2a Qiu Z, Li C.-J. Chem. Rev. 2020; 120: 10454
    • 2b Tobisu M, Chatani N. In Organometallics for Green Catalysis . Dixneuf PH, Soulé J.-F. Springer; Cham: 2018: 103-140

      Triflates and related groups:
    • 3a Korvinson KA, Akula HK, Malinchak CT, Sebastian D, Wei W, Khandaker TA, Andrzejewska MR, Zajc B, Lakshman MK. Adv. Synth. Catal. 2020; 362: 166
    • 3b Wang X.-Y, Leng J, Wang S.-M, Asiri AM, Marwani HM, Qin H.-L. Tetrahedron Lett. 2017; 58: 2340
    • 3c Zhang W, Nagashima T, Lu Y, Chen CH.-T. Tetrahedron Lett. 2004; 45: 4611
    • 3d Lipshutz BH, Buzard DJ, Vivian RW. Tetrahedron Lett. 1999; 40: 6871
    • 3e Kotsuki H, Datta PK, Hayakawa H, Suenaga H. Synthesis 1995; 1348
    • 3f Sasaki K, Sakai M, Sakakibara Y, Takagi K. Chem. Lett. 1991; 20: 2017
    • 3g Saá JM, Dopico M, Martorell G, García-Raso A. J. Org. Chem. 1990; 55: 991
    • 3h Cacchi S, Ciattini PG, Morera E, Ortar G. Tetrahedron Lett. 1986; 27: 5541
    • 3i Chen Q.-Y, He Y.-B, Yang Z.-Y. J. Chem. Soc., Chem. Commun. 1986; 1452

      Mesylates and tosylates:
    • 4a Chow WK, So CM, Lau CP, Kwong FY. Org. Chem. Front. 2014; 1: 464
    • 4b Mori A, Mizusaki T, Ikawa T, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2007; 63: 1270
    • 4c Lipshutz BH, Frieman BA, Butler T, Kogan V. Angew. Chem. Int. Ed. 2006; 45: 800
    • 4d Sajiki H, Mori A, Mizusaki T, Ikawa T, Maegawa T, Hirota K. Org. Lett. 2006; 8: 987
    • 4e Kogan V. Tetrahedron Lett. 2006; 47: 7515
    • 4f Sasaki K, Kubo T, Sakai M, Kuroda Y. Chem. Lett. 1997; 26: 617
    • 4g Wang F, Chiba K, Tada M. J. Chem. Soc., Perkin Trans. 1 1992; 1897
    • 4h Walter Cabri W, De Bernardinis S, Francalanci F, Penco S. J. Org. Chem. 1990; 55: 350

      Esters:
    • 5a Xi X, Chen T, Zhang J.-S, Han L.-B. Chem. Commun. 2018; 54: 1521
    • 5b Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. 2011; 47: 2946

      Carbamates:
    • 6a Yasui K, Higashino M, Chatani N, Tobisu M. Synlett 2017; 28: 2569
    • 6b Jørgensen KB, Rantanen T, Dörfler T, Snieckus V. J. Org. Chem. 2015; 80: 9410
    • 6c Mesganaw T, Nathel NF. F, Garg NK. Org. Lett. 2012; 14: 2918
  • 7 Isoureas: Sebök P, Tímár T, Eszenyi T. J. Org. Chem. 1994; 59: 6318

    • Pyridyl ethers and cyanurates:
    • 8a Wang Y, Shen J, Chen Q, Wang L, He M. Chin. Chem. Lett. 2019; 30: 409
    • 8b Li J, Wang Z.-X. Chem. Commun. 2018; 54: 2138
    • 8c Zhao Y, King G, Kwan MH. T, Blacker AJ. Org. Process Res. Dev. 2016; 20: 2012
    • 9a Tsukamoto H, Nakamura S, Tomida A, Doi T. Chem. Eur. J. 2020; 26: 12528
    • 9b Xu Y, Sromek AW, Neumeyer JL. Bioorg. Med. Chem. Lett. 2019; 29: 230
    • 9c Sulima A, Jalah R, Antoline JF. G, Torres OB, Imler GH, Deschamps JR, Beck Z, Alving CR, Jacobson AE, Rice KC, Matyas GR. J. Med. Chem. 2018; 61: 329
    • 9d Newton JN, Fischer DF, Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 1726

      ortho-Functionalization:
    • 10a Ramgren AD, Silberstein AL, Yang Y, Garg NK. Angew. Chem. Int. Ed. 2011; 50: 2171
    • 10b Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
    • 10c Jeganmohan M, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 8520
    • 10d Macklin TK, Snieckus V. Org. Lett. 2005; 7: 2519

      C–C Bond formation:
    • 11a Russell JE. A, Entz ED, Joyce IM, Neufeldt SR. ACS Catal. 2019; 9: 3304
    • 11b Beromi MM, Nova A, Balcells D, Brasacchio AM, Brudvig GW, Guard LM, Hazari N, Vinyard DJ. J. Am. Chem. Soc. 2017; 139: 922
    • 11c Melvin PR, Hazari N, Beromi MM, Shah HP, Williams MJ. Org. Lett. 2016; 18: 5784
    • 11d Tao J.-L, Wang Z.-X. Eur. J. Org. Chem. 2015; 6534
    • 11e Jezorek RL, Zhang N, Leowanawat P, Bunner MH, Gutsche N, Pesti AK. R, Olsen JT, Percec V. Org. Lett. 2014; 16: 6326
    • 11f Agrawal T, Cook SP. Org. Lett. 2014; 16: 5080
    • 11g Molander GA, Shin I. Org. Lett. 2013; 15: 2534
    • 11h Baghbanzadeh M, Pilger C, Kappe CO. J. Org. Chem. 2011; 76: 1507
    • 11i Quasdorf KW, Riener M, Petrova KV, Garg NK. J. Am. Chem. Soc. 2009; 131: 17748

      C-Heteroatom bond formation:
    • 12a Munteanu C, Spiller TE, Qiu J, DelMonte AJ, Wisniewski SR, Simmons EM, Frantz DE. J. Org. Chem. 2020; 85: 10334
    • 12b MacQueen PM, Stradiotto M. Synlett 2017; 28: 1652
    • 12c Yue H, Guo L, Liu X, Rueping M. Org. Lett. 2017; 19: 1788
    • 12d Ackermann L, Sandmann R, Song W. Org. Lett. 2011; 13: 1784
    • 13a Kuriyama M, Yano G, Kiba H, Morimoto T, Yamamoto K, Demizu Y, Onomura O. Org. Process Res. Dev. 2019; 23: 1552
    • 13b Kuriyama M, Kujirada S, Tsukuda K, Onomura O. Adv. Synth. Catal. 2017; 359: 1043
    • 13c Kuriyama M, Hamaguchi N, Yano G, Tsukuda K, Sato K, Onomura O. J. Org. Chem. 2016; 81: 8934
  • 14 Leowanawat P, Zhang N, Safi M, Hoffman DJ, Fryberger MC, George A, Percec V. J. Org. Chem. 2012; 77: 2885
    • 15a Liu L, Tang Y, Wang K, Huang T, Chen T. J. Org. Chem. 2021; 86: 4159
    • 15b Shi J, Yuan T, Zheng M, Wang X. ACS Catal. 2021; 11: 3040
    • 15c Iranpoor N, Panahi F. Org. Lett. 2015; 17: 214
    • 15d Kaboudin B, Abedi Y, Yokomatsu T. Eur. J. Org. Chem. 2011; 6656
    • 15e Li J, Huang C, Wen D, Zheng Q, Tu B, Tu T. Org. Lett. 2021; 23: 687
    • 15f Hosseini-Sarvari M, Dehghani A. New J. Chem. 2020; 44: 16776
    • 15g Utsumi T, Noda K, Kawauchi D, Ueda H, Tokuyama H. Adv. Synth. Catal. 2020; 362: 3583
    • 15h Villoria-del-Álamo B, Rojas-Buzo S, García-García P, Corma A. Chem. Eur. J. 2021; 27: 4588
    • 15i Chaturvedi J, Haldar C, Bisht R, Pandey G, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 7604
    • 15j Ramachandran PV, Hamann HJ. Org. Lett. 2021; 23: 2938
    • 15k Barber T, Argent SP, Ball LT. ACS Catal. 2020; 10: 5454
    • 15l Duval M, Deboos V, Hallonet A, Sagorin G, Denicourt-Nowicki A, Roucoux A. J. Catal. 2021; 396: 261
    • 15m Wang X, Lu Y, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 12203
    • 15n Gulías M, Marcos-Atanes D, MascareñasJ L, Font M. Org. Process Res. Dev. 2019; 23: 1669
    • 15o Zhang D, Iwai T, Sawamura M. Org. Lett. 2020; 22: 5240
    • 15p Zhang X.-W, Jiang G.-Q, Lei S.-H, Shan X.-H, Qu J.-P, Kang Y.-B. Org. Lett. 2021; 23: 1611
    • 15q Li H.-C, Gao W.-X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Adv. Synth. Catal. 2020; 362: 2847
    • 15r Wang H, Wu Q, Zhang J.-D, Li H.-Y, Li H.-X. Org. Lett. 2021; 23: 2078
    • 15s Itsenko O, Kihlberg T, Långström B. J. Org. Chem. 2004; 69: 4356
    • 15t Zhao Y, Snieckus V. Org. Lett. 2018; 20: 2826
  • 16 Leowanawat P, Zhang N, Percec V. J. Org. Chem. 2012; 77: 1018
  • 17 Wang R, Xu J. ARKIVOC 2010; (ix): 293
  • 18 Van Goor FF, Burton WL. PCT Int. Appl. WO 2011050325, A1, 2011