Synthesis 2021; 53(23): 4516-4524
DOI: 10.1055/a-1545-7563
paper

Iridium-Catalyzed Transfer Hydrogenation for Construction of Quinolines from 2-Aminobenzyl Alcohols with Enones in Water

Nanhua Luo
,
Hongling Shui
,
Yuhong Zhong
,
Jiuzhong Huang
,
Renshi Luo
The authors thank the National Natural Science Foundation of China (21962004, 21562004) and the Jiangxi Provincial Department of Science and Technology (20192BAB203004). This work was financially supported by the Gannan Medical University (QD201816, YJ202027) and the Jiangxi Education Hall Science and Technology Foundation (GJJ180801).


Abstract

Herein, we describe a method for the synthesis of functionalized quinolines from 2-aminobenzyl alcohols with α,β-unsaturated ketones. This method exhibits tolerance to various functional groups and high efficiency, is environmentally benign, and can be performed on a gram scale. Control experiments suggest that this transformation is accomplished by iridium complex catalyzed transfer hydrogenation, which is then followed by Friedländer cyclization. The results display that alkali is essential for the high selectivities of this catalytic system.

Supporting Information



Publication History

Received: 10 June 2021

Accepted after revision: 07 July 2021

Accepted Manuscript online:
07 July 2021

Article published online:
11 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Katritzky AR, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 1b Zhang X, Campo MA, Yao T, Larock RC. Org. Lett. 2005; 7: 763
    • 1c Ray S, Madrid PB, Catz P, LeValley SE, Furniss MJ, Rausch LL, Guy RK, DeRisi JL, Iyer LV, Green CE, Mirsalis JC. J. Med. Chem. 2010; 53: 3685
    • 1d Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
    • 1e Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
    • 1f Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
    • 1g Afzal O, Kumar S, Haider MR, Ali MR, Kumar R. Eur. J. Med. Chem. 2015; 97: 871
    • 1h Singh S, Kaur G, Mangla V, Gupta MK. J. J. Enzyme Inhib. Med. Chem. 2015; 30: 492
    • 2a Ou S, Lin ZH, Duan CY, Zhang HT, Bai ZP. Chem. Commun. 2006; 4392
    • 2b Kakogianni S, Kourkouli SN, Andreopoulou AK, Kallitsis JK. J. Mater. Chem. A 2014; 2: 8110
    • 4a Marco-Contelles J, Léon R, López MG, García AG, Villarroya M. Eur. J. Med. Chem. 2006; 41: 1464
    • 4b Joshi AA, Viswanathan CL. Bioorg. Med. Chem. Lett. 2006; 16: 2613
    • 4c Roma G, Braccio MD, Grossi G, Mattioli F, Ghia M. Curr. Med. Chem. 2013; 20: 4386
    • 4d Vandekerckhov S, Dhooghe M. Bioorg. Med. Chem. 2015; 23: 5098
    • 4e Qin JJ, Wu ML, Shu Y, Gao XR, Zhang JJ, Dong XY, Ji JY, Zhang YX, Zhou L, Zhang Q, Ding F. Toxicol. Lett. 2015; 238: 70
    • 4f Zhang PJ, Ye YQ, Qian YH, Yin BX, Zhao JM, Zhu SX, Zhang L, Yan MJ. CNS Neurol. Disord. Drug Targets 2017; 16: 724
    • 4g Sewan T, Artitiya T, Opa V, Phunuch M. Med. Chem. Res. 2021; 30: 109
    • 4h Basavarajaiah Suliphuldevara M, Raviraj P, Nagesh Gunavanthrao Y. Bioorg. Med. Chem. 2021; 32: 115973
    • 4i Shivali M, Rajnish SK, Avijit Majumder AK, Chanchal S, Devleena T. Int. J. Pharm. Res. 2021; 13: 3941
  • 5 Nakajima T, Inada T, Igarashi T, Sekioka T, Shimizu I. Bull. Chem. Soc. Jpn. 2006; 79: 1941
  • 6 Cho CS, Kim JU. Tetrahedron Lett. 2007; 48: 3775
  • 7 Chen BW. J, Chng LL, Yang J, Wei Y, Yang J, Ying JY. ChemCatChem 2013; 5: 277
  • 8 Das J, Singh K, Vellakkaran M, Banerjee D. Org. Lett. 2018; 20: 5587
  • 10 Naruto H, Togo H. Org. Biomol. Chem. 2020; 18: 570
  • 11 Skraup H. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
  • 12 Doebner O, v. Miller W. Ber. Dtsch. Chem. Ges. 1881; 14: 2812
    • 13a Cheng C.-C, Yan S.-J. Org. React. 1982; 28: 37
    • 13b Rozhkova YS, Storozheva TS, Plekhanova IV, Gorbunov AA, Smolyak AA, Shklyaev YV. Synthesis 2021; 53: 146
  • 14 Bergstrom FW. Chem. Rev. 1944; 35: 77
    • 15a Manske RF. Chem. Rev. 1942; 30: 113
    • 15b Lengyel L, Nagy TZ, Sipos G, Jones R, Dormán G, Ürge L, Darvas F. Tetrahedron Lett. 2012; 53: 738
    • 16a Povarov LS. Russ. Chem. Rev. 1967; 36: 656
    • 16b Bello D, Ramon R, Lavilla R. Curr. Org. Chem. 2010; 14: 332
  • 17 Chen S.-J, Lu G.-P, Cai C. Synthesis 2015; 47: 976
    • 18a Pfitzinger W. J. Prakt. Chem. 1886; 33: 100
    • 18b Mijangos MV, Amador-Sánchez YA, Miranda LD. Eur. J. Org. Chem. 2021; 637
  • 19 Cho CS, Kim BT, Kim T.-J, Shim SC. Chem. Commun. 2001; 2576
    • 20a Cho CS, Ren WX, Shim SC. Tetrahedron Lett. 2006; 47: 6781
    • 20b Cho CS, Ren WX, Yoon NS. J. Mol. Catal. A: Chem. 2009; 299: 117
    • 20c Phan NT. S, Nguyen TT, Nguyen KD, Vo AX. T. Appl. Catal., A 2013; 464: 128
    • 20d Xiang Y, Luo P, Hao T, Xiong W, Song X, Ding Q. Tetrahedron 2021; 79: 131832
    • 20e Xu Z, Chen H, Deng G, Huang H. Org. Lett. 2021; 23: 936
    • 20f Qin F, Tang L, Huang F, Li X, Zhang W. Chin. J. Org. Chem. 2021; 41: 318
    • 21a Cho CS, Ren WX, Shim SC. Bull. Korean Chem. Soc. 2005; 26: 1286
    • 21b Cho CS, Ren WX. J. Organomet. Chem. 2007; 692: 4182
    • 22a Cho CS, Kim BT, Choi H.-J, Kim T.-J, Shim SC. Tetrahedron 2003; 59: 7997
    • 22b Motokura K, Mizugaki T, Ebitani K, Kaneda K. Tetrahedron Lett. 2004; 45: 6029
    • 22c Martínez R, Brand GJ, Ramón DJ, Yus M. Tetrahedron Lett. 2005; 46: 3683
    • 22d Vander Mierde H, Ledoux N, Allaert B, Van Der Voort P, Drozdzak R, De Vos D, Verpoort F. New J. Chem. 2007; 31: 1572
    • 22e Verma A, Hazra S, Dolui P, Elias AJ. Asian J. Org. Chem. 2021; 10: 626
    • 22f Xu X, Ai Y, Wang R, Liu L, Yang J, Li F. J. Catal. 2021; 395: 340
  • 23 Cho CS, Seok HJ, Shim SO. J. Heterocycl. Chem. 2005; 42: 1219
    • 24a Taguchi K, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2005; 46: 4539
    • 24b Lyu X.-L, Huang S.-S, Huang Y.-Q, Song H.-J, Liu Y.-X, Li Y.-Q, Yang S.-X, Wang Q.-M. Asian J. Org. Chem. 2021; 10: 176
  • 25 Dadhania H, Raval D, Dadhania A. Polycyclic Aromat. Compd. 2021; 41: 440
  • 26 Ferlin F, Zangarelli A, Lilli S, Santoro S, Vaccaro L. Green Chem. 2021; 23: 490
  • 27 Zhu Y, Cai C. RSC Adv. 2014; 4: 52911
    • 28a Saddique FA, Farhad M, Aslam S, Ahmad M. Synth. Commun. 2021; 51: 13
    • 28b Patel AJ, Dholakia AB, Patel VC. Synth. Commun. 2021; 51: 163
    • 28c Wang D, Désaubry L, Li G, Huang M, Zheng S. Adv. Synth. Catal. 2021; 363: 2
    • 29a Luo N, Zhong Y, Wen H, Shui H, Luo R. Eur. J. Org. Chem. 2021; 1355
    • 29b Wen H, Luo N, Zhu Q, Luo R. J. Org. Chem. 2021; 86: 3850
    • 30a Cha JS. Org. Process Res. Dev. 2006; 10: 1032
    • 30b Polshettiwar V, Varma RS. Green Chem. 2009; 11: 1313
    • 30c Xu Q, Chen JH, Liu Q. Adv. Synth. Catal. 2013; 355: 697
    • 30d Xu Q, Chen JH, Tian HW, Yuan XQ, Li SG, Zhou CK, Liu JP. Angew. Chem. Int. Ed. 2014; 53: 225
    • 30e Xiong B, Zhang SD, Jiang HF, Zhang M. Org. Lett. 2016; 18: 724
  • 31 Ouyang L, Xia Y, Liao J, Miao R, Yang X, Luo R. ACS Omega 2021; 6: 10415
    • 32a Luo NH, Liao JH, Ouyang L, Wen HL, Liu JT, Tang WP, Luo RS. Organometallics 2019; 38: 3025
    • 32b Luo NH, Liao JH, Ouyang L, Wen HL, Zhong YH, Liu JT, Tang WP, Luo RS. Organometallics 2020; 39: 165
    • 32c Luo N.-H, Zhong Y.-H, Wen H.-L, Luo R. ACS Omega 2020; 5: 27723
    • 32d Ouyang L, Xia Y, Liao J, Luo R. Eur. J. Org. Chem. 2020; 6387
  • 33 Xiong B, Wang Y, Liu Y, Bao Y, Liu Z, Zhang Y, Ling Y. Org. Biomol. Chem. 2018; 16: 5707
  • 34 Zhang Z, Du H. Org. Lett. 2015; 17: 6266
  • 35 Hu X.-H, Hu X.-P. Org. Lett. 2019; 21: 10003
  • 36 Buu-Hoi NP, Royer R, Xuong ND, Jacquignon P. J. Org. Chem. 1953; 18: 1209
  • 37 Shahabi D, Tavakol H. J. Mol. Liq. 2016; 220: 324