Synthesis 2021; 53(20): 3847-3861
DOI: 10.1055/a-1516-8745
paper

Highly Efficient Synthesis of 2-Substituted Benzo[b]furan Derivatives from the Cross-Coupling Reactions of 2-Halobenzo[b]furans with Organoalane Reagents

Chang Wen
a   College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
b   Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
c   Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
,
Chuan Wu
a   College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
b   Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
c   Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
,
Ruiqiang Luo
a   College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
b   Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
c   Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
,
Qinghan Li
a   College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
b   Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
c   Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
,
Feng Chen
a   College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
b   Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
c   Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. of China
› Author Affiliations
We thank the Sichuan Provincial Department of Science and Technology support program (No. 2015NZ0033), the Fundamental Research Funds for the Central Universities, and the Southwest Minzu University (No. 2018NZD06) for financial support.


Abstract

A highly efficient and simple route for the synthesis of 2-substituted benzo[b]furans has been developed by palladium-catalyzed cross-coupling reaction of 2-halobenzo[b]furans with aryl, alkynyl, and alkylaluminum reagents. Various 2-aryl-, 2-alkynyl-, and 2-alkyl-substituted benzo[b]furan derivatives can be obtained in 23–97% isolated yields using 2–3 mol% PdCl2/4–6 mol% XantPhos as the catalyst under mild reaction conditions. The aryls bearing electron-donating or electron-withdrawing groups in 2-halobenzo[b]furans gave products in 40–97% isolated yields. In addition, aluminum reagents containing thienyl, furanyl, trimethylsilanyl, and benzyl groups worked efficiently with 2-halobenzo[b]furans as well, and three bioactive molecules with 2-substituted benzo[b]furan skeleton were synthesized. Furthermore, the broad substrates scope and the typical maintenance of vigorous efficiency on gram scale make this protocol a potentially practical method to synthesize 2-substituted benzo[b]furan derivatives. On the basis of the experimental results, a possible catalytic cycle has been proposed.

Supporting Information

Primary Data



Publication History

Received: 07 May 2021

Accepted after revision: 25 May 2021

Accepted Manuscript online:
25 May 2021

Article published online:
24 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hou X.-L, Yang Z, Wong HN. C. Progress in Heterocyclic Chemistry . Gribble GW, Gilchrist TL. Pergamon; Oxford: 2003
    • 1b Donnelly DM. X, Meegan MJ. I. In Comprehensive Heterocyclic Chemistry, Vol. 4. Katritzky AR, Rees CW. Pergamon; New York: 1984
    • 1c Sill MC, Das AK, Itou T, Karmakar S, Mukherjee PK, Mizuguchi H, Kashiwada Y, Fukui H, Nemoto H. Bioorg. Med. Chem. 2015; 23: 6869
    • 1d Simonetti SO, Larghi EL, Bracca AB. J, Kaufman TS. Nat. Prod. Rep. 2013; 30: 941
    • 2a Castro CE, Gaughan EJ, Owsley DC. J. Org. Chem. 1966; 31: 4071
    • 2b Somei M, Yamada F. Nat. Prod. Rep. 2004; 21: 278
    • 2c Zhang J, Li L, Wang Y, Wang W, Xue J, Li Y. Org. Lett. 2012; 14: 4528
  • 3 Hwang J.-W, Choi D.-H, Jeon J.-H, Kim J.-K, Jun J.-G. Bull. Korean Chem. Soc. 2010; 31: 965
    • 4a Erber S, Ringshandl R, von Angerer E. Anti-Cancer Drug Des. 1991; 6: 417
    • 4b Galal SA, Abd El-Al AS, Abdallah MM, El-Diwani HI. Bioorg. Med. Chem. Lett. 2009; 19: 2420
    • 4c Kucuksayan E, Ozben T. Curr. Top. Med. Chem. 2017; 17: 907
    • 5a Kim S, Salim AA, Swanson SM, Kinghorn AD. Anticancer Agents Med. Chem. 2006; 6: 319
    • 5b Zaher AF, Abuel-Maaty SM, El-Nassan HB, Amer SA. S, Abdelghany TM. J. Enzyme Inhib. Med. Chem. 2016; 31: 145
    • 5c Ghorab MM, Ragab FA, Heiba HI, Soliman AM. Eur. J. Med. Chem. 2016; 117: 8
    • 6a Lau CK, Bélanger PC, Scheigetz J, Dufresne C, Williams HW. R, Maycock AL, Guindon Y, Bach T, Dallob AL, Denis D, Ford-Hutchinson AW, Gale PH, Hopple SL, Letts LG, Luell S, McFarlane CS, MacIntyre E, Meurer R, Miller DK, Piechuta H, Riendeau D, Rokach J, Rouzer C. J. Med. Chem. 1989; 32: 1190
    • 6b Ohemeng KA, Apollina MA, Nguyen VN, Schwender CF, Singer M, Steber M, Ansell J, Argentieri D, Hageman W. J. Med. Chem. 1994; 37: 3663
    • 7a Aslam SN, Stevenson PC, Phythian SJ, Veitch NC, Hall DR. Tetrahedron 2006; 62: 4214
    • 7b Hiremathad A, Patil MR, Chethana KR, Chand K, Santos MA, Keri RS. RSC Adv. 2015; 5: 96809
    • 7c He W, Xu B, Bao J, Deng X, Liu W, Zhang Y, Jiang F, Fu L. Med. Chem. Res. 2016; 25: 2485
  • 8 Bowyer PW, Tate EW, Leatherbarrow RJ, Holder AA, Smith DF, Brown KA. ChemMedChem 2008; 3: 402
    • 9a Tang H.-J, Zhang X.-W, Yang L, Li W, Li J.-H, Wang J.-X, Chen J. Eur. J. Med. Chem. 2016; 124: 637
    • 9b Khan MW, Alam MJ, Rashid MA, Chowdhury R. Bioorg. Med. Chem. 2005; 13: 4796
  • 10 Halabalaki M, Alexi X, Aligiannis N, Alexis MN, Skaltsounis A.-L. J. Nat. Prod. 2008; 71: 1934
    • 11a Manarin F, Roehrs JA, Gay RM, Brandão R, Menezes PH, Nogueira CW, Zeni G. J. Org. Chem. 2009; 74: 2153
    • 11b Huang X.-C, Wang F, Liang Y, Li J.-H. Org. Lett. 2009; 11: 1139
    • 11c Yin S.-C, Zhou Q, Zhao X.-Y, Shao L.-X. J. Org. Chem. 2015; 80: 8916
    • 11d Zhao X, Zhang L.-P, Lu X.-Y, Li T.-J, Lu K. J. Org. Chem. 2015; 80: 2918
    • 12a Ota T, Hasegawa S, Inoue S, Sato K. J. Chem. Soc., Perkin Trans. 1 1988; 3029
    • 12b Watanabe M, Date M, Kawanishi K, Hori T, Furukawa S. Chem. Pharm. Bull. 1991; 39: 41
    • 12c Fuerst DE, Stoltz BM, Wood JL. Org. Lett. 2000; 2: 3521
    • 12d Miyata O, Takeda N, Morikami Y, Naito T. Org. Biomol. Chem. 2003; 1: 254
    • 12e Pan C, Yu J, Zhou Y, Wang Z, Zhou M.-M. Synlett 2006; 1657
    • 12f Rao ML. N, Awasthi DK, Banerjee D. Tetrahedron Lett. 2007; 48: 431
    • 13a Bach T, Bartels M. Synlett 2001; 1284
    • 13b Zhang H, Ferreira EM, Stoltz BM. Angew. Chem. Int. Ed. 2004; 43: 6144
    • 13c Xie X, Chen B, Lu J, Han J, She X, Pan X. Tetrahedron Lett. 2004; 45: 6235
    • 13d Willis MC, Taylor D, Gillmore AT. Org. Lett. 2004; 6: 4755
    • 13e DiMauro E, Vitullo JR. J. Org. Chem. 2006; 71: 3959
    • 13f Liang Y, Tang S, Zhang X.-D, Mao L.-Q, Xie Y.-X, Li J.-H. Org. Lett. 2006; 8: 3017
    • 13g Nagamochi M, Fang Y.-Q, Lautens M. Org. Lett. 2007; 9: 2955
    • 13h Csékei M, Novák Z, Kotschy A. Tetrahedron 2008; 64: 8992
    • 13i Hussain M, Hung NT, Langer P. Tetrahedron Lett. 2009; 50: 3929

      For selected Pt-catalyzed examples, see:
    • 14a Fürstner A, Davies PW. J. Am. Chem. Soc. 2005; 127: 15024
    • 14b Witham CA, Huang W.-Y, Tsung CK, Kuhn JN, Somorjai GA, Toste FD. Nat. Chem. 2010; 2: 36
    • 14c Li Y.-M, Liu J.-H, Witham CA, Huang W.-Y, Marcus MA, Fakra SC, Alayoglu P, Zhu Z.-W, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA. J. Am. Chem. Soc. 2011; 133: 13527

      For selected Pd-catalyzed examples, see:
    • 15a Ref. 13f.
    • 15b Huang W.-Y, Liu J.-H, Alayoglu P, Li Y.-M, Witham CA, Tsung C.-K, Toste FD, Somorjai GA. J. Am. Chem. Soc. 2010; 132: 16771
    • 15c Kim M, Lee S, Kim K, Shin D, Kim H, Song H. Chem. Commun. 2014; 50: 14938
    • 15d Rubio-Marques P, Rivero-Crespo MA, Leyva-Perez A, Corma A. J. Am. Chem. Soc. 2015; 137: 11832
    • 15e Chen J, Liu M, Wang X, Wang X, Ding J, Wu H. Synthesis 2013; 45: 2241
  • 16 Zhang Y, Xin Z.-J, Xue J.-J, Li Y. Chin. J. Chem. 2008; 26: 1461

    • For selected Au-catalyzed examples, see:
    • 17a Belting V, Krause N. Org. Lett. 2006; 8: 4489
    • 17b Hashmi AS. K, Ramamurthi TD, Rominger F. Adv. Synth. Catal. 2010; 352: 971
    • 17c Morozov OS, Lunchev AV, Bush AA, Tukov AA, Asachenko AF, Khrustalev VN, Zalesskiy SS, Ananikov VP, Nechaev MS. Chem. Eur. J. 2014; 20: 6162
    • 17d Kong L.-B, Ganguly R, Li Y.-X, Kinjo R. Chem. Sci. 2015; 6: 2893
    • 17e Xia Z.-H, Khaled O, Mouriès-Mansuy V, Ollivier C, Fensterbank L. J. Org. Chem. 2016; 81: 7182
    • 17f Zhao J, Nguyen SC, Ye R, Ye B.-H, Weller H, Somorjai GA, Alivisatos AP. F, Toste D. ACS Cent. Sci. 2017; 3: 482

      For selected Rh-catalyzed examples, see:
    • 18a Trost BM, McClory A. Angew. Chem. Int. Ed. 2007; 46: 2074
    • 18b Isono N, Lautens M. Org. Lett. 2009; 11: 1329
    • 18c Boyer A, Isono N, Lackner S, Lautens M. Tetrahedron 2010; 66: 6468
    • 18d Sarbajna A, Pandey P, Rahaman SM. W, Singh K, Tyagi A, Dixneuf PH, Bera JK. ChemCatChem 2017; 9: 1397
  • 19 Li X.-W, Chianese AR, Vogel T, Carbtree RT. Org. Lett. 2005; 7: 5437
  • 20 Nakamura M, Ilies L, Otsubo S, Nakamura E. Angew. Chem. Int. Ed. 2006; 45: 944

    • For Cu-catalyzed examples, see:
    • 21a Hiroya K, Itoh S, Sakamoto T. Tetrahedron 2005; 61: 10958
    • 21b Nakamura M, Ilies L, Otsubo S, Nakamura E. Org. Lett. 2006; 8: 2803
    • 21c Liu J, Zhang N, Yue Y, Wang D, Zhang Y, Zhang X, Zhuo K. RSC Adv. 2013; 3: 3865
    • 21d Pu W.-C, Mu G.-M, Zhang G.-L, Wang C. RSC Adv. 2014; 4: 903

      For selected recent reports on Pd-catalyzed examples, see:
    • 22a Gil-Moltó J, Nájera C. Eur. J. Org. Chem. 2005; 19: 4073
    • 22b Ohtaka A, Teratani T, Fujii R, Ikeshita K, Kawashima T, Tatsumi K, Shimomura O, Nomura R. J. Org. Chem. 2011; 76: 4052
    • 22c Priyadarshini S, Amal-J PJ, Srinivas P, Maheswaran H, Lakshmi Kantam M, Bhargava S. Tetrahedron Lett. 2011; 52: 1615
    • 22d Cano R, Yus M, Ramon DJ. Tetrahedron 2012; 68: 1393
    • 22e Zhou R, Wang W, Jiang Z.-J, Wang K, Zheng X.-L, Fu H.-Y, Chen H, Li R.-X. Chem. Commun. 2014; 50: 6023
    • 22f Yum EK, Yang O.-K, Kim J.-E, Park HJ. Bull. Korean Chem. Soc. 2013; 34: 2645
    • 22g Chahdoura F, Mallet-Ladeira S, Gomez M. Org. Chem. Front. 2015; 2: 312
    • 22h Mandali PK, Chand DK. Synthesis 2015; 47: 1661
    • 22i Bruneau A, Gustafson KP. J, Yuan N, Tai C.-W, Persson I, Zou X, Bäckvall JE. B. Chem. Eur. J. 2017; 23: 12886
    • 22j Bhadra M, Sasmal HS, Basu A, Midya SP, Kandambeth S, Pachfule P, Balaraman E, Banerjee R. ACS Appl. Mater. Interfaces 2017; 9: 13785
    • 22k Ji G.-J, Duan Y.-N, Zhang S.-C, Yang Y. Catal. Today 2019; 330: 101

      For selected recent reports on Cu-catalyzed examples, see:
    • 23a Doad GJ. S, Barltrop JA, Pretty CM, Owen TC. Tetrahedron Lett. 1989; 30: 1597
    • 23b Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
    • 23c Bates CG, Saejueng P, Murphy JM, Venkataraman D. Org. Lett. 2002; 4: 4727
    • 23d Li J.-H, Li J.-L, Wang D.-P, Pi S.-F, Xie Y.-X, Zhang M.-B, Hu X.-C. J. Org. Chem. 2007; 72: 2053
    • 23e Jaseer EA, Prasad DJ. C, Sekar G. Tetrahedron 2010; 66: 2077
    • 23f Zeng W, Wu W.-Q, Jiang H.-F, Huang L.-B, Sun Y.-D, Chen Z.-W, Li X.-W. Chem. Commun. 2013; 49: 6611
    • 23g Ref. 22g.
    • 23h Moure MJ, SanMartin R, Domínguez E. Adv. Synth. Catal. 2014; 356: 2070
    • 24a Carril M, Correa A, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 4862
    • 24b Yang J.-G, Shen G.-D, Chen D.-B. Synth. Commun. 2013; 43: 837
    • 25a Wang Z, Elokdah H, McFarlane G, Pan S, Antane M. Tetrahedron Lett. 2006; 47: 3365
    • 25b Kitamura Y, Sako S, Udzu T, Tsutsui A, Maegawa T, Monguchi Y, Sajiki H. Chem. Commun. 2007; 5069
    • 25c Molander GA, Canturk B, Kennedy LE. J. Org. Chem. 2009; 74: 973
    • 25d Denmark SE, Smith RC, Chang WT, Muhuhi JM. J. Am. Chem. Soc. 2009; 131: 3104
    • 25e Fang H, Guo L, Zhang Y, Yao W, Huang Z. Org. Lett. 2016; 18: 5624
    • 26a Lin S.-Y, Chen C.-L, Lee Y.-J. J. Org. Chem. 2003; 68: 2968
    • 26b Thielges S, Meddah E, Bisseret P, Eustache J. Tetrahedron Lett. 2004; 45: 907
    • 26c Gill GS, Grobelny DW, Chaplin JH, Flynn BL. J. Org. Chem. 2008; 73: 1131
    • 26d James CA, Coelho AL, Gevaert M, Forgione P, Snieckus V. J. Org. Chem. 2009; 74: 4094
    • 26e Alvey L, Prado S, Saint-Joanis B, Michel S, Koch M, Cole ST, Tillequin F, Janin YL. Eur. J. Med. Chem. 2009; 44: 2497
    • 26f Rao ML. N, Jadhav DN, Venkatesh V. Eur. J. Org. Chem. 2009; 4300
    • 26g Hung N.-T, Hussain M, Malik I, Villinger A, Langer P. Tetrahedron Lett. 2010; 51: 2420
    • 26h Rao ML. N, Jadhav DN, Dasgupta P. Org. Lett. 2010; 12: 2048
    • 26i Rao ML. N, Banerjee D, Dhanorkar RJ. Tetrahedron 2010; 66: 3623
    • 26j Rao ML. N, Venkatesh V, Jadhav DN. Eur. J. Org. Chem. 2010; 3945
    • 26k Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
    • 26l Rao ML. N, Awasthi DK, Talode JB. Tetrahedron Lett. 2012; 53: 2662
    • 27a Hu J, Liu L, Wang X.-C, Hu Y.-Y, Yang S.-D, Liang Y.-M. Green Sustainable Chem. 2011; 1: 165
    • 27b Damera K, Ke B, Wang K, Dai C, Wang L, Wang B. RSC Adv. 2012; 2: 9403
    • 27c Siddiqui IR, Waseem MA, Shamim S, Shireen AS, Srivastava A. Tetrahedron Lett. 2013; 54: 4154
    • 27d Sun S.-X, Wang J.-J, Xu Z.-J, Cao L.-Y, Shi Z.-F, Zhang H.-L. Tetrahedron 2014; 70: 3798
    • 27e Liu Y, Lu T, Tang W.-F, Gao J. RSC Adv. 2018; 8: 28637
  • 28 Protti S, Fagnoni M, Albini A. J. Org. Chem. 2012; 77: 6473
  • 30 Takeda N, Miyata O, Naito T. Eur. J. Org. Chem. 2007; 9: 1491
    • 31a Yuan Y, Men H.-B, Lee C. J. Am. Chem. Soc. 2004; 126: 14720
    • 31b Ghosh S, Das J. Tetrahedron Lett. 2011; 52: 1112

      For selected recent reports on the addition to carbonyl compounds, see:
    • 32a Wu K.-H, Gau H.-M. J. Am. Chem. Soc. 2006; 128: 14808
    • 32b Wu K.-H, Chen C.-A, Gau H.-M. Angew. Chem. Int. Ed. 2007; 46: 5373
    • 32c Wu K.-H, Chuang D.-W, Chen C.-A, Gau H.-M. Chem.Commun. 2008; 20: 2343
    • 32d Zhou S.-L, Wu K.-H, Chen C.-A, Gau H.-M. J. Org. Chem. 2009; 74: 3500
    • 32e Hawner C, Müller D, Gremaud L, Felouat A, Woodward S, Alexakis A. Angew. Chem. Int. Ed. 2010; 49: 7769
    • 32f Zhou Y, Lecourt T, Micouin L. Angew. Chem. Int. Ed. 2010; 49: 2607
    • 32g Gremaud L, Alexakis A. Angew. Chem. Int. Ed. 2012; 51: 794
    • 32h Andrews P, Latham CM, Magre M, Willcox D, Woodward S. Chem. Commun. 2013; 49: 1488
    • 32i Kolb A, von Zezschwitz P. Top. Organomet. Chem. 2013; 41: 245

      For selected recent reports on the cross-coupling reactions, see:
    • 33a Baba S, Negishi E. J. Am. Chem. Soc. 1976; 98: 6729
    • 33b Takai K, Oshima K, Nozaki H. Tetrahedron Lett. 1980; 21: 2531
    • 33c Blum J, Gelman D, Baidossi W, Shakh E, Rosenfeld A, Aizenshtat Z, Wassermann BC, Frick M, Heymer B, Schutte S, Wernik S, Schumann H. J. Org. Chem. 1997; 62: 8681
    • 33d Link JT. Org. React. 2002; 60: 157
    • 33e Qian M.-X, Huang Z, Negishi E. Org. Lett. 2004; 6: 1531
    • 33f Cooper T, Novak A, Humphreys LD, Walker MD, Woodward S. Adv. Synth. Catal. 2006; 348: 686
    • 33g Zhou S.-L, Yang Z.-Y, Chen X, Li Y.-M, Zhang L.-J, Fang H, Wang W, Zhu X.-C, Wang SW. J. Org. Chem. 2015; 80: 6323
    • 33h Li Q.-H, Shao X.-B, Ding Y, Wen C, Zhao Z.-G. Curr. Org. Chem. 2018; 22: 1523
    • 33i Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 33j Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
    • 33k Wang H.-Q, Zhang S.-Z, Wang Z.-Q, He M.-H, Xu K. Org. Lett. 2016; 18: 5628
    • 33l Li QH, Wang J.-H, Wen C, Xin J, Cao K.-P, Wu K, Liang M. Chin. Chem. Lett. 2019; 30 in press; DOI: 10.1016/j.cclet.2019.02.028
    • 34a Ku S.-L, Hui X.-P, Chen C.-A, Kuo Y.-Y, Gau H.-M. Chem. Commun. 2007; 43: 3847
    • 34b Biradar DB, Gau H.-M. Chem. Commun. 2011; 47: 10467
    • 34c Groll K, Blümke TD, Unsinn A, Haas D, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 11157
    • 34d Ogawa H, Yang Z.-K, Minami H, Kojima K, Saito T, Wang C, Uchiyama M. ACS Catal. 2017; 7: 3988
    • 35a Biradar DB, Gau H.-M. Org. Biomol. Chem. 2012; 10: 4243
    • 35b Chen X, Zhou L.-M, Li Y.-M, Xie T, Zhou S.-L. J. Org. Chem. 2014; 79: 230
    • 36a Li Q.-H, Gau H.-M. Synlett 2012; 5: 747
    • 36b Li Q.-H, Jeng J.-Y, Gau H.-M. Eur. J. Org. Chem. 2014; 35: 7916
    • 36c Li Q.-H, Liao J.-W, Huang Y.-L, Chiang R.-T, Gau H.-M. Org. Biomol. Chem. 2014; 38: 7634
    • 36d Zhang Z, Mo S, Zhang G, Shao X.-B, Li Q.-H, Zhong Y. Synlett 2017; 28: 611
    • 36e Zhang Z, Shao X.-B, Zhang G, Li Q.-H, Li X.-Y. Synthesis 2017; 49: 3643
    • 36f Li Q.-H, Ding Y, Zhang G, Zhang Z, Mo S. Curr. Org. Synth. 2017; 14: 462
    • 36g Shao X.-B, Zhang Z, Li Q.-H, Zhao Z.-G. Org. Biomol. Chem. 2018; 16: 4797
    • 36h Shao X.-B, Wen C, Zhang G, Cao K.-P, Wu L, Li Q.-H. J. Organomet. Chem. 2018; 870: 68
    • 36i Shao X.-B, Jiang X, Li Q.-H, Zhao Z.-G. Tetrahedron 2018; 74: 6063
    • 36j Mo S, Shao X.-B, Zhang G, Li Q.-H. RSC Adv. 2017; 7: 27243
    • 36k Zhang G, Wu K, Wen C, Li Q.-H. J. Organomet. Chem. 2020; 906, 121040
  • 37 Ye C, Li Y, Bao H. Adv. Synth. Catal. 2017; 359: 3720
  • 38 Vasin VA, Fadin MV, Tarasova IV. Russ. J. Org. Chem. 2018; 53: 1815