Synthesis 2021; 53(19): 3621-3629
DOI: 10.1055/a-1499-8742
paper

Synthesis of β-Hydroxy Aryl Selenides via Transition-Metal-Free Three-Component Reaction of Arylamines, Elemental Selenium, and Epoxides

Hongwei Wang
a   College of Medicine, Shaoxing University, Shaoxing 312000, P. R. of China
b   Zhejiang Engineering Research Center of Fat-Soluble Vitamin, ­Shaoxing 312000, P. R. of China
,
Hongchen Li
c   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Yalong Bai
b   Zhejiang Engineering Research Center of Fat-Soluble Vitamin, ­Shaoxing 312000, P. R. of China
d   Zhejiang Medicine CO, Ltd., Changhai Company, Shaoxing 312000, P. R. of China
,
Yanling Hei
b   Zhejiang Engineering Research Center of Fat-Soluble Vitamin, ­Shaoxing 312000, P. R. of China
d   Zhejiang Medicine CO, Ltd., Changhai Company, Shaoxing 312000, P. R. of China
,
Junwei Chen
b   Zhejiang Engineering Research Center of Fat-Soluble Vitamin, ­Shaoxing 312000, P. R. of China
d   Zhejiang Medicine CO, Ltd., Changhai Company, Shaoxing 312000, P. R. of China
,
Guoqi Yu
a   College of Medicine, Shaoxing University, Shaoxing 312000, P. R. of China
b   Zhejiang Engineering Research Center of Fat-Soluble Vitamin, ­Shaoxing 312000, P. R. of China
,
Yun-Bing Zhou
c   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
› Author Affiliations


Abstract

An efficient protocol for the construction of valuable β-hydroxy aryl selenides from easily available arylamines, elemental selenium, and epoxides through a transition-metal-free radical process is described. A wide variety of β-hydroxy aryl selenides were obtained in good to excellent yields with excellent stereo- and regioselectivity. In this reaction, two C–Se bonds can be built along with the cleavage of a C–N and C–O bond, demonstrating the high step economy and efficiency of this approach.

Supporting Information



Publication History

Received: 23 February 2021

Accepted after revision: 05 May 2021

Accepted Manuscript online:
05 May 2021

Article published online:
31 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
    • 1b Singh FV, Wirth T. Catal. Sci. Technol. 2019; 9: 1073
    • 1c Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985
    • 1d Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255

      For selected reviews, see:
    • 2a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 2b Jose DE, Kanchana US, Mathew TV, Anilkumar G. Curr. Org. Chem. 2020; 24: 1230
    • 3a Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 15: 307
    • 3b Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951
    • 4a Rampon DS, Luz EQ, Lima DB, Balaguez RA, Schneider PH, Alves D. Dalton Trans. 2019; 48: 9851
    • 4b Sonawane AD, Koketsu M. Curr. Org. Chem. 2019; 23: 3206
    • 4c Bürger M, Röttger SH, Loch MN, Jones PG, Werz DB. Org. Lett. 2020; 22: 5025

      For selected recent examples, see:
    • 5a Abenante L, Padilha NB, Anghinoni JM, Penteado F, Rosati O, Santi C, Silva MS, Lenardão EJ. Org. Biomol. Chem. 2020; 18: 5210
    • 5b Guan S, Chen Y, Wu H, Xu R. RSC Adv. 2020; 10: 27058
    • 5c Yang D, Li G, Xing C, Cui W, Li K, Wei W. Org. Chem. Front. 2018; 5: 2974

      For selected recent examples, see:
    • 6a Zhang Z.-Z, Chen R, Zhang X.-H, Zhang X.-G. J. Org. Chem. 2021; 86: 632
    • 6b Jin G.-Q, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. RSC Adv. 2020; 10: 30439
    • 6c Wu J, Gao W.-X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Lett. 2020; 22: 5555
    • 6d Wu J, Yang Y.-F, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. ACS Omega 2020; 5: 23358
    • 6e Zhang X, Huang XB, Zhou YB, Liu MC, Wu HY. Chem. Eur. J. 2021; 27: 944
    • 6f Yang YF, Li CY, Leng T, Huang XB, Gao WX, Zhou YB, Liu MC, Wu HY. Adv. Synth. Catal. 2020; 362: 2168
    • 6g Wang D.-L, Fang Y, Wang S.-Y, Ji S.-J. Tetrahedron 2020; 76: 131083
    • 6h Gao X, Tang L, Huang L, Huang Z.-S, Ma Y, Wu G. Org. Lett. 2019; 21: 745
    • 6i Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3518
    • 6j Wang H, Ying J, Lai M, Qi X, Peng J.-B, Wu X.-F. Adv. Synth. Catal. 2018; 360: 1693
    • 6k Ni P, Tan J, Zhao W, Huang H, Deng G.-J. Adv. Synth. Catal. 2019; 361: 5351
    • 6l Guo T, Wei X.-N, Liu Y, Zhang P.-K, Zhao Y.-H. Org. Chem. Front. 2019; 6: 1414
    • 6m Jakubczyk M, Mkrtchyan S, Madura ID, Marek PH, Iaroshenko VO. RSC Adv. 2019; 9: 25368
    • 6n Zhu J, Zhu W, Xie P, Pittman CU, Zhou A. Tetrahedron 2018; 74: 6569
    • 6o Werz DB, Gleiter R. J. Org. Chem. 2003; 68: 9400
    • 7a Sharpless KB, Lauer RF. J. Am. Chem. Soc. 1973; 95: 2697
    • 7b Dumont W, Bayet P, Krief A. Angew. Chem., Int. Ed. Engl. 1974; 13: 804
    • 7c Hori T, Sharpless KB. J. Org. Chem. 1978; 43: 1689
    • 8a Remion J, Dumont W, Krief A. Tetrahedron Lett. 1976; 1385
    • 8b Piers E, Nagakura I. Tetrahedron Lett. 1976; 3237
    • 9a Van Ende D, Krief A. Tetrahedron Lett. 1976; 457
    • 9b Van Ende D, Dumont W, Hevesi L, Krief A. Angew. Chem., Int. Ed. Engl. 1975; 14: 700
    • 9c Dumont W, Krief A. Angew. Chem., Int. Ed. Engl. 1975; 14: 350
    • 10a Min L, Wu G, Liu M, Gao W, Ding J, Chen J, Huang X, Wu H. J. Org. Chem. 2016; 81: 7584
    • 10b Leng T, Wu G, Zhou Y.-B, Gao W, Ding J, Huang X, Liu M, Wu H. Adv. Synth. Catal. 2018; 360: 4336
    • 10c Soleiman-Beigi M, Kohzadi H. Arab. J. Chem. 2019; 12: 1532
    • 10d Ganesh V, Chandrasekaran S. Synthesis 2009; 3267
    • 10e Capperucci A, Tiberi C, Pollicino S, Degl’Innocenti A. Tetrahedron Lett. 2009; 50: 2808
    • 10f Tanini D, Capperucci A, Degl’Innocenti A. Eur. J. Org. Chem. 2015; 357
    • 10g Yang M, Yuan C, Pan Y, Zhu C. Chin. J. Chem. 2006; 24: 669
    • 10h Yang M, Zhu C, Yuan F, Huang Y, Pan Y. Org. Lett. 2005; 7: 1927
    • 10i Yang M, Zhu C, Yuan F, Huang Y, Pan Y. Org. Lett. 2005; 7: 1927
    • 10j Devan N, Srihar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
    • 10k Vieira AA, Azeredo JB, Godoi M, Santi C, da Silva Junior EN, Braga A. J. Org. Chem. 2015; 80: 2120
    • 10l Sridhar R, Srinivas B, Surendra K, Krishnaveni NS, Rao KR. Tetrahedron Lett. 2005; 46: 8837
    • 10m Zhang Y, Wu S, Yan J. Helv. Chim. Acta 2016; 99: 654
    • 10n Redon S, Leleu S, Pannecoucke X, Franck X, Outurquin F. Tetrahedron 2008; 64: 9293
    • 10o Angeli A, Tanini D, Capperucci A, Supuran CT. ACS Med. Chem. Lett. 2017; 8: 1213
  • 11 Wu G, Min L, Li H, Gao W, Ding J, Huang X, Liu M, Wu H. Green Chem. 2018; 20: 1560
    • 12a Luo D, Wu G, Yang H, Liu M, Gao W, Huang X, Chen J, Wu H. J. Org. Chem. 2016; 81: 4485
    • 12b Gao C, Wu G, Min L, Liu M, Gao W, Ding J, Chen J, Huang X, Wu H. J. Org. Chem. 2017; 82: 250
    • 12c An C, Li C.-Y, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Lett. 2019; 21: 6710
    • 13a Zang H, Sun J.-G, Dong X, Li P, Zhang B. Adv. Synth. Catal. 2016; 358: 1746
    • 13b Hari DP, Hering T, König B. Org. Lett. 2012; 14: 5334
  • 14 Singh D, Deobald AM, Camargo LR. S, Tabarelli G, Rodrigues OE. D, Brag AL. Org. Lett. 2010; 12: 3288