Synlett 2021; 32(12): 1179-1186
DOI: 10.1055/a-1463-9527
synpacts

Cooperative Hydrogen Atom Transfer: From Theory to Applications

Padmanabha V. Kattamuri
,
This work was financially supported by the Cancer Prevention and Research Institute of Texas (RR190025) and startup funds from Rice University.


Dedicated with respect and admiration to Prof. Harry B. Gray on the occasion of his 85th birthday

Abstract

Hydrogen atom transfer (HAT) is one of the fundamental transformations of organic chemistry, allowing the interconversion of open- and closed-shell species through the concerted movement of a proton and an electron. Although the value of this transformation is well appreciated in isolation, with it being used for homolytic C–H activation via abstractive HAT and radical reduction via donative HAT, cooperative HAT (cHAT) reactions, in which two hydrogen atoms are removed or donated to vicinal reaction centers in succession through radical intermediates, are comparatively unknown outside of the mechanism of desaturase enzymes. This tandem reaction scheme has important ramifications in the thermochemistry of each HAT, with the bond dissociation energy (BDE) of the C–H bond adjacent to the radical center being significantly lowered relative to that of the parent alkane, allowing each HAT to be performed by different species. Herein, we discuss the thermodynamic basis of this bond strength differential in cHAT and demonstrate its use as a design principle in organic chemistry for both dehydrogenative (application 1) and hydrogenative (application 2) reactions. We hope that this overview will highlight the exciting reactivity that is possible with cHAT and inspire further developments with this mechanistic approach.

1 Introduction and Theory

2 Application: Dehydrogenative Transformations

3 Application: Alkene Hydrogenation

4 Future Applications of cHAT



Publication History

Received: 10 March 2021

Accepted after revision: 24 March 2021

Publication Date:
24 March 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Green SA, Crossley SW. M, Matos JL. M, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
  • 2 Banerjee R, Truhlar DG, Dybala-Defratyka A, Paneth P. Hydrogen Atom Transfers in B12 Enzymes . In Hydrogen-Transfer Reactions . Hynes JT, Klinman JP, Limbach H.-H, Schowen RL. Wiley-VCH; Weinheim: 2006: 1473-1495
  • 3 Capaldo L, Quadri LL, Ravelli D. Green Chem. 2020; 22: 3376
  • 4 Mayer JM, Larsen AS, Bryant JR, Wang K, Lockwood M, Rice G, Won T. Non-Organometallic Mechanisms for C–H Bond Oxidation: Hydrogen Atom versus Electron versus Hydride Transfer. In Activation and Functionalization of C–H Bonds. Goldberg KI, Goldman AS. ACS Symposium Series 885; American Chemical Society; Washington DC: 2004: 356-369
  • 5 Nakano Y, Biegasiewicz KF, Hyster TK. Curr. Opin. Chem. Biol. 2019; 49: 16
  • 6 Sarkar S, Cheung KP. S, Gevorgyan V. Chem. Sci. 2020; 11: 12974
  • 7 Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
  • 8 Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
  • 9 Newcomb M, Toy PH. Acc. Chem. Res. 2000; 33: 449
  • 10 Roth JP, Yoder JC, Won T, Mayer JM. Science 2001; 294: 2524
  • 11 Mayer JM. Acc. Chem. Res. 2011; 44: 36
  • 12 Parada GA, Goldsmith ZK, Kolmar S, Rimgard BP, Mercado BQ, Hammarström L, Hammes-Schiffer S, Mayer JM. Science 2019; 364: 471
  • 13 Bryant JR, Mayer JM. J. Am. Chem. Soc. 2003; 125: 10351
  • 14 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 15 West JG, Sorensen EJ. Isr. J. Chem. 2017; 57: 259
  • 16 Roberts BP. Chem. Soc. Rev. 1999; 28: 25
  • 17 Salamone M, Dilabio GA, Bietti M. J. Org. Chem. 2012; 77: 10479
  • 18 Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
  • 19 Luo YR. Comprehensive Handbook of Chemical Bond Energies 2007
  • 20 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
  • 21 Abrams DJ, West JG, Sorensen EJ. Chem. Sci. 2017; 8: 1954
  • 22 Kattamuri PV, West JG. J. Am. Chem. Soc. 2020; 142: 19316
  • 23 Behrouzian B, Buist PH. Prostaglandins Leukotrienes Essent. Fatty Acids 2003; 68: 107
  • 24 Buist PH. Nat. Prod. Rep. 2004; 21: 249
  • 25 Behrouzian B, Fauconnot L, Daligault F, Nugier-Chauvin C, Patin H, Buist PH. Eur. J. Biochem. 2001; 268: 3545
  • 26 Breslow R, Baldwin S, Flechtner T, Kalicky P, Liu S, Washburn W. J. Am. Chem. Soc. 1973; 95: 3251
  • 27 Breslow R, Scholl P. J. Am. Chem. Soc. 1971; 93: 2331
  • 28 Breslow R. Acc. Chem. Res. 1995; 28: 146
  • 29 Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216
  • 30 Gunanathan C, Milstein D. Science 2013; 341: 1229712
  • 31 Chowdhury AD, Weding N, Julis J, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6477
  • 32 Xu W, Rosini GP, Krogh-Jespersen K, Goldman AS, Gupta M, Jensen CM, Kaska WC. Chem. Commun. 1997; 2273
  • 33 Krogh-Jespersen K, Czerw M, Summa N, Renkema KB, Achord PD, Goldman AS. J. Am. Chem. Soc. 2002; 124: 11404
  • 34 Burk MJ, Crabtree RH, McGrath DV. J. Chem. Soc., Chem. Commun. 1985; 1829
  • 35 Baudry D, Ephritikhine M, Felkin H, Holmes-Smith R. J. Chem. Soc., Chem. Commun. 1983; 788
  • 36 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
  • 37 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 38 Tzirakis MD, Lykakis IN, Orfanopoulos M. Chem. Soc. Rev. 2009; 38: 2609
  • 39 Hill J. J. Photochem. 1986; 33: 267
  • 40 Halperin SD, Fan H, Chang S, Martin RE, Britton RA. Angew. Chem. Int. Ed. 2014; 53: 4690
  • 41 Ryu I, Tani A, Fukuyama T, Ravelli D, Montanaro S, Fagnoni M. Org. Lett. 2013; 15: 2554
  • 42 Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
  • 43 Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
  • 44 Gridnev AA, Ittel SD. Chem. Rev. 2001; 101: 3611
  • 45 Eisenberg DC, Norton JR. Isr. J. Chem. 1991; 31: 55
  • 46 Li G, Kuo JL, Han A, Abuyuan JM, Young LC, Norton JR, Palmer JH. J. Am. Chem. Soc. 2016; 138: 7698
  • 47 Li G, Han A, Pulling ME, Estes DP, Norton JR. J. Am. Chem. Soc. 2012; 134: 14662
  • 48 Schrauzer GN. Acc. Chem. Res. 1968; 1: 97
  • 49 Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Acc. Chem. Res. 2009; 42: 1995
  • 50 Connolly P, Espenson JH. Inorg. Chem. 1986; 25: 2684
  • 51 Chao T.-H, Espenson JH. J. Am. Chem. Soc. 1978; 100: 129
  • 52 Hu X, Cossairt BM, Brunschwig BS, Lewis NS, Peters JC. Chem. Commun. 2005; 4723
  • 53 Estes DP, Grills DC, Norton JR. J. Am. Chem. Soc. 2014; 136: 17362
  • 54 Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JM. C, Liu X, Wu J. Nat. Commun. 2020; 11: 1956
  • 55 Iwasaki K, Wan KK, Oppedisano A, Crossley SW. M, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 1300
  • 56 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
  • 57 King SM, Ma X, Herzon SB. J. Am. Chem. Soc. 2014; 136: 6884
  • 58 Ma X, Herzon SB. Chem. Sci. 2015; 6: 6250
  • 59 Ma X, Herzon SB. Beilstein J. Org. Chem. 2018; 14: 2259
  • 60 Farney EP, Feng SS, Schäfers F, Reisman SE. J. Am. Chem. Soc. 2018; 140: 1267
  • 61 Feng J, Noack F, Krische MJ. J. Am. Chem. Soc. 2016; 138: 12364
  • 62 Corden BB, Drago RS, Perito RP. J. Am. Chem. Soc. 1985; 107: 2903
  • 63 Hamilton DE, Drago RS, Zombeck A. J. Am. Chem. Soc. 1987; 109: 374
  • 64 Mukaiyama T, Yamada T. Bull. Chem. Soc. Jpn. 1995; 68: 17
  • 65 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
  • 66 Kim D, Rahaman SM. W, Mercado BQ, Poli R, Holland PL. J. Am. Chem. Soc. 2019; 141: 7473
  • 67 Lo JC, Kim D, Pan CM, Edwards JT, Yabe Y, Gui J, Qin T, Gutiérrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
  • 68 Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
  • 69 Cole SJ, Kirwan JN, Roberts BP, Willis CR. J. Chem. Soc., Perkin Trans. 1 1991; 103
  • 70 Armstrong DA, Sun Q, Schuler RH. J. Phys. Chem. 1996; 100: 9892
  • 71 Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 72 Whittemore SM, Autrey T. Isr. J. Chem. 2015; 55: 196