Synlett 2021; 32(13): 1269-1274
DOI: 10.1055/a-1406-0484
cluster account
Perspectives on Organoheteroatom and Organometallic Chemistry

Titanium: A Unique Metal for Radical Dehydroxylative Functionalization of Alcohols

Xiaobo Pang
,
We thank the National Natural Science Foundation of China (22071084, 21772072) for financial support.


Abstract

The dehydroxylative functionalization of alcohols is synthetic appealing, but it remains a long-term challenge in the synthetic community. Low-valent titanium has shown the power to produce carbon radicals from alcohols via homolytic cleavage of the C–OH bonds and thus offers the potential to overcome this problem. In this perspective manuscript, we summarized the recent advance on radical dehydroxylative transformation of alcohols either promoted or catalyzed by titanium. The limitation and outlook of the studies in this field are also provided.

1 Introduction

2 Recent Developments in Dehydroxylative Functionalization of Alcohols

2.1 Stoichiometric Titanium Complexes Mediated Homolysis of Alcohols

2.2 Radical Dehydroxylative Functionalization of Alcohols by Ti Catalysis

3 Summary and Outlook



Publication History

Received: 10 January 2021

Accepted after revision: 04 March 2021

Accepted Manuscript online:
04 March 2021

Article published online:
07 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI. Toxicol. Sci. 2002; 70: 86
  • 2 Cahours MA. Ann. Chim. Phys. 1861; 62: 257
  • 3 Herman DF, Nelson WK. J. Am. Chem. Soc. 1953; 75: 3877
  • 4 Kealy TJ, Pauson PL. Nature 1951; 168: 1039
  • 5 Wilkinson G, Birmingham JM. J. Am. Chem. Soc. 1954; 76: 4281
  • 6 For the fundamental patterns of titanium, see: Mikami K, Matsumoto Y, Shiono T. "Organometallic Complexes of Titanium" in Science of Synthesis, Vol. 2; Imamoto, T.; Noyori, R., Thieme, Stuttgart:; 2003: 457-679.
  • 7 Enemærke JR, Larsen J, Skrydstrup T, Daasbjerg K. J. Am. Chem. Soc. 2004; 126: 7853
  • 8 Enemærke JR, Larsen J, Skrydstrup T, Daasbjerg K. Organometallics 2004; 23: 1866
    • 9a Streuff J. Chem. Rec. 2014; 14: 1100
    • 9b Morcillo SP, Miguel D, Campaña AG, Álvarez de Cienfuegos L, Justicia J, Cuerva JM. Org. Chem. Front. 2014; 1: 15
    • 9c Rosales A, Rodríguez-García I, Muñoz-Bascón J, Roldan-Molina E, Padial NM, Morales LP, García-Ocaña M, Oltra JE. Eur. J. Org. Chem. 2015; 4567
    • 9d Okamoto S. Chem. Rec. 2016; 16: 857
    • 9e Castro-Rodriguez M, Rodriguez-Garcia I, Rodriguez-Maecker RN, Pozo-Morales L, Oltra JE, Martinez AR. Org. Process Res. Dev. 2017; 21: 911
    • 9f Botubol-Ares JM, Durán-Peña MJ, Hansonb JR, Hernández-Galána R, Collado IG. Synthesis 2018; 50: 2163
    • 9g McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
    • 9h Beaumier EP, Pearce AJ, See XY, Tonks IA. Nat. Rev. Chem. 2019;  3:  15
    • 9i Fermi A, Gualandi A, Bergamini G, Cozzi PG. Eur. J. Org. Chem. 2020; 6955
    • 9j Manßen M, Schafer LL. Chem. Soc. Rev. 2020; 49: 6947
  • 10 Davidson PJ, Lappert MF, Pearce R. Chem. Rev. 1976; 76: 219
    • 11a Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
    • 11b RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1989; 111: 4525
    • 12a Boucher-Jacobs C, Liu P, Nicholas KM. Organometallics 2018; 37: 2468
    • 12b Bandari C, Nicholas KM. J. Org. Chem. 2020; 85: 3320
  • 14 Crevier TJ, Mayer JM. J. Am. Chem. Soc. 1997; 119: 8485
  • 15 Larsen DB, Petersen AR, Dethlefsen JR, Teshome A, Fristrup P. Chem. Eur. J. 2016; 22: 16621
  • 16 Sato M, Oshima K. Chem. Lett. 1982; 11: 157
  • 17 Radical Reactions in Organic Synthesis. Zard SZ. Oxford; New York: 2003
    • 18a Fu GC. ACS Cent. Sci. 2017; 3: 7692
    • 18b Barton DH. R, Crich D. Tetrahedron Lett. 1985; 26: 757
  • 19 van Tamelen EE, Schwartz MA. J. Am. Chem. Soc. 1965; 87: 3277
  • 20 McMurry JE, Silvestri MG, Fleming MP, Hoz T, Grayston MW. J. Org. Chem. 1978; 43: 3249
  • 21 Diéguez HR, López A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quílez del Moral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
  • 22 Suga T, Shimazu S, Ukaji Y. Org. Lett. 2018; 20: 5389
  • 23 Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
    • 24a Pang X, Peng X, Shu X.-Z. Synthesis 2020; 52: 3751
    • 24b He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
    • 24c Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P.-F, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
    • 24d Duan J, Wang K, Xu G.-L, Kang S, Qi L, Liu X.-Y, Shu X.-Z. Angew. Chem. Int. Ed. 2020; 59:  23083
  • 25 Yan XB, Li CL, Jin WJ, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
  • 26 Duan J, Du Y.-F, Pang X, Shu X.-Z. Chem. Sci. 2019; 10: 8706
    • 27a Jia XG, Guo P, Duan J, Shu X.-Z. Chem. Sci. 2018; 9: 640
    • 27b Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
  • 28 Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
  • 29 Zheng X, Dai X.-J, Yuan H.-Q, Ye C.-X, Ma J, Huang P.-Q. Angew. Chem. Int. Ed. 2013; 52: 3494