Synthesis 2021; 53(14): 2457-2468
DOI: 10.1055/a-1401-2795
paper

A New One-Pot Three-Component Synthesis of 4-Aryl-6-cycloamino-1,3,5-triazin-2-amines under Microwave Irradiation

Muhammad Syafiq Bin Shahari
a   School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
,
Ahmad Junaid
b   Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
,
Edward R. T. Tiekink
c   Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
,
a   School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
d   School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia
› Author Affiliations
This work is supported by the Ministry of Higher Education, Malaysia under Fundamental Research Grant Scheme (Grant no. FRGS/1/2020/STG04/MUSM/02/2). This work also received partial support from the School of Pharmacy, Monash University Malaysia (Bridging Grant 2020). Sunway University Sdn Bhd is thanked for the financial support of the X-ray crystallography laboratory (Grant no. STR-RCTR-RCCM-001-2019).


Dedicated to the memory of Professor Boris Syropyatov (6 Nov 1940 – 24 Oct 2020)

Abstract

A new method for the fast synthesis of diverse 4-aryl-6-cycloamino-1,3,5-triazin-2-amines was developed. The synthesis is performed under microwave irradiation in a one-pot manner from cyanoguanidine, aromatic aldehydes, and cyclic amines. Their three-component reaction in the presence of hydrochloric acid produced dihydrotriazines, which were then converted (without isolation) into the targeted compounds via aromatic dehydrogenation in the presence of alkali. The reaction tolerated various aromatic aldehydes (including heterocyclic) and cyclic amines. Crystal structures of two representative 4-aryl-6-morpholino-1,3,5-triazin-2-amines were established by X-ray crystallography. The results of preliminary biological screening identified potent antileukemic activity for 6-[3,4-dihydroisoquinolin-2(1H)-yl]-4-phenyl-1,3,5-triazin-2-amine.

Supporting Information



Publication History

Received: 14 January 2021

Accepted after revision: 26 February 2021

Accepted Manuscript online:
26 February 2021

Article published online:
10 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Müller G. History of the Discovery and Development of Triazine Herbicides . In The Triazine Herbicides . LeBaron HM, McFarland JE, Burnside OC. Elsevier; San Diego: 2008: 13-29
  • 2 Stock ML, Elazab ST, Hsu WH. J. Vet. Pharmacol. Therap. 2018; 41: 184
  • 3 Shah DR, Modh RP, Chikhalia KH. Future Med. Chem. 2014; 6: 463
  • 4 Lim FP. L, Dolzhenko AV. Eur. J. Med. Chem. 2014; 85: 371
  • 5 Singla P, Luxami V, Paul K. Eur. J. Med. Chem. 2015; 102: 39
  • 6 Kumar R, Kumar N, Roy RK, Singh A. Curr. Signal Transduct. Ther. 2019; 14: 87
  • 7 Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. Eur. J. Med. Chem. 2017; 142: 523
  • 8 Kim ES. Drugs 2017; 77: 1705
  • 9 Stein EM. Future Oncol. 2017; 14: 23
  • 10 del Campo JM, Birrer M, Davis C, Fujiwara K, Gollerkeri A, Gore M, Houk B, Lau S, Poveda A, González-Martín A, Muller C, Muro K, Pierce K, Suzuki M, Vermette J, Oza A. Gynecol. Oncol. 2016; 142: 62
  • 11 Britten CD, Adjei AA, Millham R, Houk BE, Borzillo G, Pierce K, Wainberg ZA, LoRusso PM. Invest. New Drugs 2014; 32: 510
  • 12 Kawahata W, Asami T, Kiyoi T, Irie T, Taniguchi H, Asamitsu Y, Inoue T, Miyake T, Sawa M. J. Med. Chem. 2018; 61: 8917
  • 13 La Rosee P, Jia T, Demehri S, Haertel N, de Vries P, Bonham L, Hollenback D, Singer JW, Melo JV, Druker BJ, Deininger MW. Clin. Cancer Res. 2006; 12: 6540
  • 14 Douvas MG, Hogan KN, Ji Y, Hollenback D, Bonham L, Singer JW, Mitchell BS. Leuk. Res. 2006; 30: 1027
  • 15 Poirier M, Awale M, Roelli MA, Giuffredi GT, Ruddigkeit L, Evensen L, Stooss A, Calarco S, Lorens JB, Charles R.-P, Reymond J.-L. ChemMedChem 2019; 14: 224
  • 16 Junaid A, Lim FP. L, Tiekink ER. T, Dolzhenko AV. RSC Adv. 2020; 10: 25517
  • 17 Jin H, Cianchetta G, Devasagayaraj A, Gu K, Marinelli B, Samala L, Scott S, Stouch T, Tunoori A, Wang Y, Zang Y, Zhang C, Kimball SD, Main AJ, Ding Z.-M, Sun W, Yang Q, Yu X.-Q, Powell DR, Wilson A, Liu Q, Shi Z.-C. Bioorg. Med. Chem. Lett. 2009; 19: 5229
  • 18 Huang X.-P, Karpiak J, Kroeze WK, Zhu H, Chen X, Moy SS, Saddoris KA, Nikolova VD, Farrell MS, Wang S, Mangano TJ, Deshpande DA, Jiang A, Penn RB, Jin J, Koller BH, Kenakin T, Shoichet BK, Roth BL. Nature 2015; 527: 477
  • 19 Yu X, Huang X.-P, Kenakin TP, Slocum ST, Chen X, Martini ML, Liu J, Jin J. J. Med. Chem. 2019; 62: 7557
  • 20 Dugar S, Hollinger FP, Mahajan D, Sen S, Kuila B, Arora R, Pawar Y, Shinde V, Rahinj M, Kapoor KK, Bhumkar R, Rai S, Kulkarni R. ACS Med. Chem. Lett. 2015; 6: 1190
  • 21 Mogilski S, Kubacka M, Łażewska D, Więcek M, Głuch-Lutwin M, Tyszka-Czochara M, Bukowska-Strakova K, Filipek B, Kieć-Kononowicz K. Inflamm. Res. 2017; 66: 79
  • 22 Łażewska D, Więcek M, Ner J, Kamińska K, Kottke T, Schwed JS, Zygmunt M, Karcz T, Olejarz A, Kuder K, Latacz G, Grosicki M, Sapa J, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. Eur. J. Med. Chem. 2014; 83: 534
  • 23 Łażewska D, Kurczab R, Więcek M, Satała G, Kieć-Kononowicz K, Handzlik J. Bioorg. Chem. 2019; 84: 319
  • 24 Schramm HW, Schubert-Zsilavecz M, Saracoglu AI, Kratky C. Monatsh. Chem. 1991; 122: 1063
  • 25 Dao P, Garbay C, Chen H. Tetrahedron 2013; 69: 3867
  • 26 Xu Y, Shen B, Liu L, Qiao C. Tetrahedron Lett. 2020; 61: 151844
  • 27 Zeng M, Wang T, Cui D.-M, Zhang C. New J. Chem. 2016; 40: 8225
  • 28 Chaurasia SR, Dange R, Bhanage BM. Catal. Commun. 2020; 137: 105933
  • 29 Junaid A, Lim FP. L, Tiekink ER. T, Dolzhenko AV. ACS Comb. Sci. 2019; 21: 548
  • 30 Junaid A, Lim FP. L, Chuah LH, Dolzhenko AV. RSC Adv. 2020; 10: 12135
  • 31 Modest EJ. J. Org. Chem. 1956; 21: 1
  • 32 Dolzhenko AV. Microwave-assisted multicomponent reactions. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Microwaves in Organic Synthesis. Inamuddin Boddula R, Asiri AM. Elsevier; Amsterdam: 2021: 205-229
  • 33 Junaid A, Dolzhenko AV. Heterocycles 2019; 98: 1678
  • 34 Junaid A, Tan YS, Tiekink ER. T, Dolzhenko AV. RSC Adv. 2019; 9: 37660
  • 35 Anet FA. L, Yavari I. J. Am. Chem. Soc. 1977; 99: 2794
  • 36 Rubiralta M, Giralt E, Diez A. Studies in Organic Chemistry. Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, Vol. 43. Elsevier; Amsterdam: 1991: 34-87
  • 37 Kuwano VE, Taniguchi E, Maekawa K. Agric. Biol. Chem. 1971; 35: 1572
  • 38 Colautti A, Maurich V. Farmaco Ed. Sci. 1973; 28: 531
  • 39 Guioca V. Ann. Pharm. Fr. 1973; 31: 283
  • 40 Shapiro SL, Parrino VA, Freedman L. J. Org. Chem. 1961; 26: 3331
  • 41 Rigaku Oxford Diffraction, CrysAlis PRO. Yarnton; Oxfordshire: 2017
  • 42 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 43 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
  • 44 Farrugia LJ. J. Appl. Crystallogr. 2012; 45: 849
  • 45 Brandenburg K. Diamond 2006
  • 46 Spek AL. Acta Crystallogr., Sect. D 2009; 65: 148
  • 47 CCDC 2035574 (1l) and 2035575 (1n) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 48 Cory AH, Owen TC, Barltrop JA, Cory JG. Cancer Commun. 1991; 3: 207
  • 49 GraphPad Prism version 8.0.0 for Windows . GraphPad Software; San Diego (USA): 2020