Synthesis 2021; 53(13): 2269-2276
DOI: 10.1055/a-1385-6119
paper

2-Pyridyl Sulfoxide Directed Pd(II)-Catalyzed C–H Olefination of Arenes with Molecular Oxygen as the Sole Oxidant

Mamta Yadav
,
Ram Singh Jat
,
Bibek Sarma
,
M. Bhanuchandra
This work was supported by the Department of Science and Technology, Science and Engineering Research Board (DST-SERB, Grant Ref. No. EEQ/2017/000768) and the University Grants Commission [UGC, File No. 30-356/2017(BSR)]. M.Y., R.S.J., and B.S. thank the Council of Scientific and Industrial Research (CSIR), India and the Science and Engineering Research Board (SERB) for research fellowships. We thank the Department of Science and Technology, Fund for Improvement of S&T Infrastructure in Higher Educational Institutions [DST-FIST­, Grant No. SR/FST/CSI-257/2014(C)] for a research grant to the Department of Chemistry, and also thank the Central University of Rajasthan for support.


Abstract

Pd(II)-catalyzed C–H olefination of aryl 2-pyridyl sulfoxides with unactivated and activated olefins has been demonstrated. We employed environmentally benign and inexpensive molecular oxygen as the sole oxidant. The versatile nature of the 2-pyridyl sulfoxide directing group has been proven by its transformation to the sulfone functionality. Deuterium scrambling experiments and intramolecular kinetic isotopic studies were carried out to gain insights into the reaction pathway.

Supporting Information



Publication History

Received: 28 January 2021

Accepted after revision: 08 February 2021

Accepted Manuscript online:
08 February 2021

Article published online:
23 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1b McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 1c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1d Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1e Li B, Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 1f Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 1g Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 2a Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
    • 2b Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
    • 3a Miura M, Tsuda T, Satoh T, Pivsa-Art S, Nomura M. J. Org. Chem. 1998; 63: 5211
    • 3b Boele MD. K, van Strijdonck GP. F, de Vries AH. M, Kamer PC. J, de Vries JG, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2002; 124: 1586
    • 3c Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 7666
    • 3d Maehara A, Tsurugi H, Satoh T, Miura M. Org. Lett. 2008; 10: 1159
    • 3e Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 3f Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
    • 3g Rauf W, Thompson AL, Brown JM. Chem. Commun. 2009; 3874
    • 3h Shi Z, Zhang C, Li S, Pan D, Ding S, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
    • 3i Ueda S, Okada T, Nagasawa H. Chem. Commun. 2010; 46: 2462
    • 3j Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 6169
    • 4a Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
    • 4b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 4c Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
    • 5a Chu J.-H, Lin P.-S, Wu M.-J. Organometallics 2010; 29: 4058
    • 5b Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
    • 5c Zhao B, Shi Z, Yuan Y. Chem. Rec. 2016; 16: 886
    • 5d Azpíroz R, Giuseppe AD, Urriolabeitia A, Passarelli V, Polo V, Pérez-Torrente JJ, Oro LA, Castarlenas R. ACS Catal. 2019; 9: 9372
    • 5e Panja S, Maity S, Majhi B, Ranu BC. Eur. J. Org. Chem. 2019; 5777
    • 6a Miura M, Tsuda T, Satoh T, Nomura M. Chem. Lett. 1997; 1103
    • 6b Xiao B, Fu Y, Xu J, Gong T.-J, Dai J.-J, Yi J, Liu L. J. Am. Chem. Soc. 2010; 132: 468
    • 6c Graczyk K, Ma W, Ackermann L. Org. Lett. 2012; 14: 4110
    • 6d Bhanuchandra M, Yadav MR, Rit RK, Kuram MR, Sahoo AK. Chem. Commun. 2013; 49: 5225
    • 6e Liu H, Luo Y, Zhang J, Liu M, Dong L. Org. Lett. 2020; 22: 4648
    • 7a Parthasarathy K, Bolm C. Chem. Eur. J. 2014; 20: 4896
    • 7b Yadav MR, Rit RK, Shankar M, Sahoo AK. J. Org. Chem. 2014; 79: 6123
    • 7c Rit RK, Yadav MR, Ghosh K, Sahoo AK. Tetrahedron 2015; 71: 4450
    • 8a Huang C, Gevorgyan V. J. Am. Chem. Soc. 2009; 131: 10844
    • 8b Dudnik AS, Chernyak N, Huang C, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 8729
    • 8c Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
  • 9 García-Rubia A, Arrayás RG, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 6511
    • 10a Shi B.-F, Zhang Y.-H, Lam JK, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 460
    • 10b Wei Y, Duan A, Tang P.-T, Li J.-W, Peng R.-M, Zhou Z.-X, Luo X.-P, Kurmoo M, Liu Y.-J, Zeng M.-H. Org. Lett. 2020; 22: 4129
    • 11a Yu M, Liang Z, Wang Y, Zhang Y. J. Org. Chem. 2011; 76: 4987
    • 11b Romero-Revilla JA, García-Rubia A, Arrayás RG, Fernández-Ibáñez M. Á, Carretero JC. J. Org. Chem. 2011; 76: 9525
    • 11c Holub J, Eigner V, Vrzal L, Dvořáková H, Lhoták P. Chem. Commun. 2013; 49: 2798
    • 11d Wesch T, Leroux FR, Colobert F. Adv. Synth. Catal. 2013; 355: 2139
    • 11e Nobushige K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1188
    • 11f Dherbassy Q, Schwertz G, Chessé M, Hazra CK, Wencel-Delord J, Colobert F. Chem. Eur. J. 2016; 22: 1735
    • 11g Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 9842
    • 11h Tang K.-X, Wang C.-M, Gao T.-H, Chen L, Fan L, Sun L.-P. Adv. Synth. Catal. 2019; 361: 26
    • 11i Sato T, Nogi K, Yorimitsu H. ChemCatChem 2020; 12: 3467
    • 11j Saito H, Yamamoto K, Sumiya Y, Liu L.-J, Nogi K, Maeda S, Yorimitsu H. Chem. Asian J. 2020; 15: 2442
    • 12a Kjaer A. Pure Appl. Chem. 1977; 49: 137
    • 12b Ottenheijm HC. J, Liskamp RM. J, van Nispen SP. J. M, Boots HA, Tijhuis MW. J. Org. Chem. 1981; 46: 3273
    • 12c Lindberg P, Brändström A, Wallmark B, Mattsson H, Rikner L, Hoffmann K.-J. Med. Res. Rev. 1990; 10: 1
    • 12d Agranat I, Caner H. Drug Discovery Today 1999; 4: 313
    • 12e Maguire AR, Papot S, Ford A, Touhey S, O’Connor R, Clynes M. Synlett 2001; 41
    • 12f Bentley R. Chem. Soc. Rev. 2005; 34: 609
    • 13a Laquindanum JG, Katz HE, Lovinger AJ, Dodabalapur A. Adv. Mater. 1997; 9: 36
    • 13b Jiang W, Li Y, Wang Z. Chem. Soc. Rev. 2013; 42: 6113
    • 13c Ramki K, Venkatesh N, Sathiyan G, Thangamuthu R, Sakthivel P. Org. Electron. 2019; 73: 182
    • 14a Aurisicchio C, Baciocchi E, Gerini MF, Lanzalunga O. Org. Lett. 2007; 9: 1939
    • 14b Xue F, Li X, Wan B. J. Org. Chem. 2011; 76: 7256
    • 14c Xue F, Wang D, Li X, Wan B. Org. Biomol. Chem. 2013; 11: 7893
    • 14d Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
    • 14e Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
    • 14f Jia T, Cao P, Wang B, Lou Y, Yin X, Wang M, Liao J. J. Am. Chem. Soc. 2015; 137: 13760
    • 14g Chen Q.-A, Dong X, Chen M.-W, Wang D.-S, Zhou Y.-G, Li Y.-X. Org. Lett. 2010; 12: 1928
    • 14h Wang B, Shen C, Yao J, Yin H, Zhang Y. Org. Lett. 2014; 16: 46
    • 14i Bizet V, Kowalczyk R, Bolm C. Chem. Soc. Rev. 2014; 43: 2426
  • 15 Padala K, Jeganmohan M. Chem. Commun. 2014; 50: 14573
    • 16a Luzyanin KV, Marianov AN, Kislitsyn PG, Ananikov VP. ACS Omega 2017; 2: 1419
    • 16b García-Rubia A, Fernández-Ibáñez M. Á, Arrayás RG, Carretero JC. Chem. Eur. J. 2011; 17: 3567
    • 16c Richter H, Beckendorf S, Mancheño OG. Adv. Synth. Catal. 2011; 353: 295
    • 16d Sun M, Wang Z, Wang J, Guo P, Chen X, Li Y.-M. Org. Biomol. Chem. 2016; 14: 10585
    • 16e Zhao J.-L, Chen X.-X, Xie H, Ren J.-T, Gou X.-F, Sun M. Synlett 2017; 28: 1232
    • 17a Chen W.-L, Gao Y.-R, Mao S, Zhang Y.-L, Wang Y.-F, Wang Y.-Q. Org. Lett. 2012; 14: 5920
    • 17b Yang L, Zhang G, Huang H. Adv. Synth. Catal. 2014; 356: 1509
    • 17c Sharma R, Kumar R, Sharma U. J. Org. Chem. 2019; 84: 2786
    • 17d Gandeepan P, Cheng C.-H. J. Am. Chem. Soc. 2012; 134: 5738
    • 18a Wang N.-J, Mei S.-T, Shuai L, Yuan Y, Wei Y. Org. Lett. 2014; 16: 3040
    • 18b Yang F.-L, Ma X.-T, Tian S.-K. Chem. Eur. J. 2012; 18: 1582
    • 18c Mizuta Y, Obora Y, Shimizu Y, Ishii Y. ChemCatChem 2012; 4: 187
    • 18d Liu B, Jiang H.-Z, Shi B.-F. J. Org. Chem. 2014; 79: 1521
  • 19 The structures of regioisomers were assigned by analogy to compounds reported in the literature; see ref. 16b.
  • 20 Pd complex 6 has been synthesized in DCE and the structure unambiguously determined by X-ray analysis; see ref. 11b. Pd complex 6 synthesized in DCE and DMF showed identical peaks in the 1H NMR spectra (see the Supporting Information).
  • 21 One of the referees suggested the use of 1–2 equivalents of D2O instead of 10 equivalents of D2O as it is too much for the reaction. However, no deuterium incorporation was found even with 2 equivalents of D2O. Secondly, to avoid any interference of D2O in the palladation step, a similar reaction was performed without D2O and finally the reaction quenched with D2O to capture deuterated product. But, the 1H NMR data showed that no deuterated product was formed.