Synlett 2021; 32(08): 795-799
DOI: 10.1055/a-1385-2345
letter

DMAP-Catalyzed Reaction of Diethyl 1,3-Acetonedicarboxylate with 2-Hydroxybenzylideneindenediones: Facile Synthesis of Fluorenone-Fused Coumarins

,
Raghad Bayari
This work was supported by Qatar University (Student Grant, Grant No. QUST-2-CAS-2019-28).


Dedicated to Professor Adrian Schwan of the University of Guelph on the occasion of his 60th birthday

Abstract

The base-catalyzed reaction of diethyl 1,3-acetonedicarboxylate with 2-hydroxybenzylidene indenediones was studied. The reaction provides a facile and expeditious protocol for the synthesis of natural product inspired fluorenone-fused coumarins in good to very good yields. This process resembles a combination of domino Michael–intramolecular Knoevenagel–aromatization–lactonization reactions in a single step. Although this reaction operates with many bases, the best yields were obtained with DMAP as a catalyst. This protocol could open new potential avenues for the synthesis of fused coumarins by the reaction of substituted β-keto esters with different 2-(2-hydroxybenzylidenes) of 1,3-dicarbonyl compounds.

Supporting Information



Publication History

Received: 02 January 2021

Accepted after revision: 07 February 2021

Accepted Manuscript online:
07 February 2021

Article published online:
18 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Kancherla S, Jørgensen KB. J. Org. Chem. 2020; 85: 11140
  • 2 Ibarra IA, Islas-Jácome A, González-Zamora E. Org. Biomol. Chem. 2018; 16: 1402
  • 3 Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
  • 4 Kotha S, Meshram M, Tiwari A. Chem. Soc. Rev. 2009; 38: 2065
  • 5 Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
  • 6 Singh H, Singh JV, Bhagat K, Gulati HK, Sanduja M, Kumar N, Kinarivala N, Sharma S. Bioorg. Med. Chem. 2019; 27: 3477
  • 7 Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier García AG, Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
  • 8 Calcio Gaudino E, Tagliapietra S, Martina K, Palmisano G, Cravotto G. RSC Adv. 2016; 6: 46394
  • 9 Wang Y, Wang S, Chen B, Li M, Hu X, Hu B, Jin L, Sun N, Shen Z. Synlett 2020; 31: 261
  • 10 Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Bioorg. Chem. 2020; 103: 104163
  • 11 Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Molecules 2018; 23: 250
  • 12 Zhang L, Xu Z. Eur. J. Med. Chem. 2019; 181: 111587
  • 13 Riveiro M, De Kimpe N, Moglioni A, Vazquez R, Monczor F, Shayo C, Davio C. Curr. Med. Chem. 2010; 17: 1325
  • 14 Zhu J.-J, Jiang J.-G. Mol. Nutr. Food Res. 2018; 62: 1701073
  • 15 Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
  • 16 Sun X, Liu T, Sun J, Wang X. RSC Adv. 2020; 10: 10826
  • 17 Tasior M, Kim D, Singha S, Krzeszewski M, Ahn KH, Gryko DT. J. Mater. Chem. C 2015; 3: 1421
  • 18 Trenor SR, Shultz AR, Love BJ, Long TE. Chem. Rev. 2004; 104: 3059
  • 19 Miller MA, Day RA, Estabrook DA, Sletten EM. Synlett 2020; 31: 450
  • 20 Shi Y, Gao S. Tetrahedron 2016; 72: 1717
  • 21 Hu Q.-F, Zhou B, Huang J.-M, Gao X.-M, Shu L.-D, Yang G.-Y, Che C.-T. J. Nat. Prod. 2013; 76: 292
  • 22 Wang S, Wen B, Wang N, Liu J, He L. Arch. Pharm. Res. 2009; 32: 521
  • 23 Gao H, Wang S, Qi Y, He G, Qiang B, Wang S, Zhang H. Bioorg. Med. Chem. Lett. 2019; 29: 126724
  • 24 Pang X, Tan Y, Tan C, Li W, Du N, Lu Y, Jiang Y. ACS Appl. Mater. Interfaces 2019; 11: 28246
  • 25 Do TT, Pham HD, Manzhos S, Bell JM, Sonar P. ACS Appl. Mater. Interfaces 2017; 9: 16967
  • 26 Revankar HM, Bukhari SN. A, Kumar GB, Qin H.-L, Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A, Ibrar A, Shehzadi SA, Saeed F, Khan I, Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier GarcíaA. G, Osegueda-Robles S, Thakur A, Singla R, Jaitak V, Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Molecules 2018; 23: 250
  • 27 Manick A.-D, Salgues B, Parrain J.-L, Zaborova E, Fages F, Amatore M, Commeiras L. Org. Lett. 2020; 22: 1894
  • 28 Tanaka K, Fukawa N, Suda T, Noguchi K. Angew. Chem. Int. Ed. 2009; 48: 5470
  • 29 Eiden F, Gmeiner P. Arch. Pharm. (Weinheim, Ger.) 1987; 320: 213
  • 30 Poudel TN, Lee YR. Org. Biomol. Chem. 2014; 12: 919
  • 31 Masesane BI, Mazimba O. Bull. Chem. Soc. Ethiop. 2014; 28: 289
  • 32 Shkoor M, Su H.-L, Ahmed S, Hegazy S. J. Heterocycl. Chem. 2020; 57: 813
  • 33 Fatunsin O, Iaroshenko V, Dudkin S, Shkoor M, Volochnyuk D, Gevorgyan A, Langer P. Synlett 2010; 1533
  • 34 Yu J.-K, Chien H.-W, Lin Y.-J, Karanam P, Chen Y.-H, Lin W. Chem. Commun. 2018; 54: 9921
  • 35 Pigot C, Noirbent G, Peralta S, Duval S, Nechab M, Gigmes D, Dumur F. Helv. Chim. Acta 2019; 102: e1900229
  • 36 General Procedure for the Synthesis of Ethyl 7-Hydroxy-6,13-dioxo-6,13-dihydrofluoreno[2,1-c]chromene-8-carboxylates 5a–k 4-Dimethylaminopyridine (DMAP, 0.3 equiv, 0.3 mmol) was added to a solution of 2-hydroxybenzylideneindenediones 3ak (1 equiv, 1 mmol) and diethyl 1,3-acetonedicarboxylate (4, 1.2 equiv, 1.2 mmol) in ethanol (10 mL). The reaction solution was heated at 70 °C until completion of the reaction as indicated by TLC analysis (ca. 2 h). The reaction solution was then allowed to cool down to room temperature after which an aqueous acetic acid solution (10%) was added. The formed precipitate was filtered and the solid obtained was crystallized from dioxane. Ethyl 7-Hydroxy-6,13-dioxo-6,13-dihydrofluoreno[2,1-c]chromene-8-carboxylate (5a) Yellow crystals; yield: 0.24 g (62%); mp 239–241 ℃. 1H NMR (600 MHz, CDCl3): δ = 1.46 (t, 3 H, J = 7.2 Hz), 4.75 (q, 2 H, J = 7.2 Hz), 7.63 (dd, 1 H, J = 8.2, 1.2 Hz), 7.40–7.44 (m, 1 H), 7.45–7.55 (m, 3 H), 7.57–7.63 (m, 1 H), 7.75 (dt, 1 H, J = 7.3, 0.9 Hz), 9.58 (dd, 1 H, J = 8.3, 1.5 Hz), 13.21 (s, 1 H). 13CNMR (150 MHz, CDCl3): δ = 190.0, 165.7, 165.6, 165.5, 151.0, 150.7, 139.0, 138.5, 135.7, 134.7, 133.1, 131.6, 131.0, 125.1, 124.5, 122.9, 120.6, 117.9, 117.2, 117.0, 106.2, 62.6, 14.1. FTIR: 2988, 1698.9, 1732.7, 1666.8, 1584, 1217.7, 761.1 cm–1. Anal. Calcd for C23H14O6: C, 71.50; H, 3.65. Found: C, 71.58; H, 3.68. MS (ESI): m/z (%): 386 [M]+ (100), 341.0 (81), 312 (88), 200 (70), 341.0 (85.6).
  • 37 Hernandes M, Cavalcanti SM, Moreira DR, de Azevedo Junior WF, Leite AC. Curr. Drug Targets 2010; 11: 303
  • 38 Gerebtzoff G, Li-Blatter X, Fischer H, Frentzel A, Seelig A. ChemBioChem 2004; 5: 676